Math, asked by Payaltanwar, 1 year ago


x   + 1 \div x     = 5  \:  find \:  x  {}^{2}  + 1 \div x {}^{2}

Answers

Answered by Anonymous
9

given :- x + 1/x = 5

➡ x + 1 = 5x

➡ x - 5x = -1

➡ -4x = -1

➡ x = -1/-4

➡ x = 1/4

therefore x² = (1/4)² = 1/16

and 1/x² = 1/1 × 16/1

= 16

hence, value of x² + 1/x²

= 1/16 + 16

LCM of 1 and 16 = 1 × 16

= 16

= 1/16 + 256/16

= 257/16 FINAL ANSWER

Answered by shikhaku2014
4

 \huge \boxed{ \bold \: {Solution}}

 \implies \: x + 1  \div x = 5 \\  \\  \implies \: x + 1 \times  \frac{1}{x}  = 5

\\   \implies \:  x + 1 = 5 \times x \\  \\  \implies \: x + 1 = 5x  \\  \\  \implies  \: x - 5x =  - 1

\\    \implies \:  - 4x \:  =  - 1 \\  \\  \implies \: x =  \dfrac{ \cancel - 1}{{  \cancel- }4}

 \large \boxed{  \bold{\implies \: x =  \frac{1}{4}  }}

Now

to \: find \:  : x {}^{2} + 1 \div x {}^{2}

Put the value of x

 \implies \: ( { \frac{1}{4} )}^{2}  + 1 \div(   \frac{1}{4} )^{2}

 \implies \:  \frac{1}{16}  + 1 \times 16

 \frac{1}{16}  + 16

  \large{\frac{1 + 256}{16} }

 \large \boxed { \bold{ \underline{ \underline{\implies \: \frac{257}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 16 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } }}}}

Similar questions