Math, asked by afreenpatel2002, 10 months ago


x = 1 -  \sqrt{2 \: }  \:  \: find \: the \:  \: value \: ofx }^{2}  \:  +  \frac{1}{x {}^{2} }

Answers

Answered by EuphoricEpitome
6

Given:

 x = 1 - \sqrt{2}

To Find:

\rm the\:value\:of \: x^2 +\frac{1}{x^2}

Solution :

 x = 1 - \sqrt{2}\\ \\ \\ \frac{1}{x} = \frac{1}{1-\sqrt{2}} \\ \\ \\ \implies (by\: rationalising) \frac{1}{1 -\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}} \\ \\ \\ \bold {We\:know\:that,}\\ \\ \\ {\pink{\boxed{(a+b)(a-b) = a^2-b^2}}} \\ \\ \\ \implies \frac{1+\sqrt{2}}{(1)^2 - (\sqrt{2})^2}\\ \\ \\ \implies \frac{1+\sqrt{2}}{1-2}\\ \\ \\ \implies \frac{1+\sqrt{2}}{-1} \\ \\ \\ \implies -(1+\sqrt{2})\\ \\ \\ \implies -1-\sqrt{2}

 x +\frac{1}{x} = \\ \\ \\ \implies (1-\sqrt{2}) + (-1- \sqrt{2}) \\ \\ \\ \implies -\sqrt{2}-\sqrt{2} \\ \\ \\ \implies -2\sqrt{2}

\bold {We \:know\:that}\\ \\ \\ {\purple{\boxed{(a+b)^2 = a^2+b^2+2ab}}}\\ \\ \\ (x+\frac{1}{x})^2 = x^2+\frac{1}{x^2} + 2(x \times \frac{1}{x}\\ \\ \\ by\: putting \:values \\ \\ \\ (-2\sqrt{2})^2 = x^2+\frac{1}{x^2} + 2\\ \\ \\ 8 = x^2+\frac{1}{x^2} + 2\\ \\ \\ x^2+\frac{1}{x^2}  = 8-2 \\ \\ \\ {\blue{\boxed{x^2+\frac{1}{x^2} = 6}}}

Answered by Anonymous
30

\red{\color{white}{\fcolorbox{cyan}{black}{Answer:-}}}

\boxed{\sf{x = 1 -  \sqrt{2} }} \\   \\⇝\sf \frac{1}{ x }  =  \frac{1}{1 -  \sqrt{2} } \\ \\ \sf \: Rationalising \: the \: denominator :-  \\\\⇝\sf  \frac{1}{x}  =  \frac{1}{1 -  \sqrt{2} }  \times  \frac{1  +   \sqrt{2} }{1  +   \sqrt{2} } \\\\  ⇝\sf \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{ {(1)}^{2}  -  { (\sqrt{2}) }^{2} }  \\\\⇝\sf  \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{1 - 2}  \\\\ ⇝ \sf\frac{1}{x}  =  \frac{1 +  \sqrt{2} }{ - 1}  \\\\ \sf{\therefore}~~</p><p> \boxed{\sf{\frac{1}{x}  =   - 1 -\sqrt{  2}}}

\sf Finding~value~ of ~x +  \frac{1}{x}\\\\⇝\sf x +  \frac{1}{x}  = 1 -  \sqrt{2}  + ( - 1 -  \sqrt{2} )\\\\ ⇝\sf x +  \frac{1}{x}  =1 -  \sqrt{2}  - 1 -  \sqrt{2}  \\\\ \sf {\therefore}~ ~ \boxed{\sf{ x +   \frac{1}{x}  = - 2 \sqrt{2}}}  \\\\\sf Finding~value~ of ~{(x +  \frac{1}{x})}^{2}\\\\⇝\sf  {(x +  \frac{1}{x} ) }^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  \\\\⇝\sf {(x +  \frac{1}{x} ) }^{2}  = {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\\\ ⇝ \sf {(- 2 \sqrt{2} ) }^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\\\⇝\sf 8 = {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2  \\\\⇝\sf 8 - 2 = {x}^{2}  +  \frac{1}{ {x}^{2} }   \\\\  </p><h3>{\therefore}~~  \boxed{\sf{\red{{x}^{2}  +  \frac{1}{ {x}^{2} }   = 6}}}

Similar questions