Math, asked by Anonymous, 3 months ago


(x + 1)(x + 2)(x + 3)(x + 4) = 120 \:  \: prove \:  \: that

Answers

Answered by SmitaMissinnocent
4

Answer:

(x + 1)(x + 2)(x + 3)(x + 4) = 120 \\  \\  = ((x + 1)(x + 4))(x + 2)(x + 3) = 120 \\  \\  = ( {x}^{2}  + 5x + 4)( {x}^{2}  + 5x + 6) = 120 \\  \\ (a + 4)(a + 6) - 120 = 0( {x}^{2}  + 5x = a \:  \: ok) \\  \\  {a}^{2}  + 4a + 6a + 24 - 120 = 0 \\  \\  =  {a}^{2}  + 10a - 96 = 0  \\  \\ =  {a}^{2}  + 16a  - 6a - 96 = 0 \\  \\ a(a + 16) - 6(a + 16) = 0 \\  \\ (a + 16)(a - 6) = 0 \\ a + 16 = 0 \:  \: or \:  \: a - 6 = 0 \\  \\ ifa + 16 = 0 \:  \: then \:  \:  {x}^{2}  + 5x + 16 = 0 \\  \\  {5}^{2}  - 4 \times 1 \times 16 = 25 - 64 =  - 39 < 0so \:  \: the \:  \: element \:  \: are \:  \: not \:  \: real. \\  \\ if \:  \: a - 6 = 0 \:  \: then \:  \:  {x}^{2}  + 5x - 6 = 0 \\  \\ x =  \frac{ \sqrt[ - 5 +  - ]{ {5}^{2} - 4 \times 1 \times ( - 6) } }{2 \times 1}  \\  \\  =  \frac{ - 5 +  -  \sqrt{ 25 + 24} }{2 }  \\  \\  =   \frac{ \sqrt[ - 5 +  - ]{49} }{2}  \\  \\  \frac{ - 5 +  - 7}{2}  \\  \\ x =  \frac{ - 5}{7} or \:  \:  \frac{ - 5 - 7}{2}  \\  \\  = x = 1or - 6

Answered by bivauttara
2

Answer:

120=(x+1)(x+2)(x+3)(x+4)=((x+1)(x+4))((x+2)(x+3))

=((x2+5x+5)−1)((x2+5x+5)+1)…(1)

=(x2+5x+5)2−1,

we get x2+5x+5=±11.

Thus x2+5x−6=0 or x2+5x+16=0. The first of these give x=1 or x=−6. The second of these give x=12(−5±−39−−−−√).

It is easy to verify that x=1 and x=−6 are both solutions; in fact, 120=2⋅3⋅4⋅5=(−5)⋅(−4)⋅(−3)⋅(−2).

That the second pair of complex conjugates is also a solution can be best verified by replacing x2+5x by −16 in eqn. (1), say.

There are two real solutions, x=1 and x=−6, and two non-real solutions x=12(−5±−39−−−−√). ■

Similar questions