Math, asked by dhiraj123425, 11 months ago


x {}^{2}  + 10x - 125 = 2x {}^{2}  + 5x
please solved it​

Answers

Answered by kaushik05
5

 \purple{ \huge \mathfrak{solution}}

Given,

 {x}^{2}  + 10x - 125 = 2 {x}^{2}  + 5x \\  =  > 2 {x}^{2}  -  {x}^{2 }  + 5x - 10x + 125 \\  =  >  {x}^{2}  - 5x + 125 = 0 \\

Here a=1 , b =-5 and c=125

x =  \frac{ - b \pm \sqrt{b^{2} - 4ac } } {2a}

put the values,

 =  &gt; \frac{ 5 \pm \sqrt{</strong><strong>2</strong><strong>5</strong><strong> - 500} }{2} \\  =  &gt;  \frac{5 \pm \sqrt{ - 4</strong><strong>7</strong><strong>5} }{2}

As we know that

 \sqrt{ - 1}  = i

then

x=

 \boxed{ \red{ \frac{5 + 4</strong><strong>7</strong><strong>5i}{2} }}

and

x=

 \boxed{  \red{\frac{5  - 4</strong><strong>7</strong><strong>5i}{2} }}

Answered by Anonymous
2

x^2+10x-125=2x^2+5x

=2x^2-x^2+5x-10x+125

=x^2-5x+125

solve it .

x= -(-5)+_√(-5)^2-4(1)(125)/2(1)

=5+_√-475/2

x=5+475i/2

and

x=5-475i/2

Similar questions