Answers
Answered by
1
Answer:
1
Use the sum-product pattern
2
+
1
2
−
4
5
x^{2}+{\color{#c92786}{12x}}-45
x2+12x−45
2
+
1
5
−
3
−
4
5
x^{2}+{\color{#c92786}{15x}}{\color{#c92786}{-3x}}-45
x2+15x−3x−45
2
Common factor from the two pairs
2
+
1
5
−
3
−
4
5
x^{2}+15x-3x-45
x2+15x−3x−45
(
+
1
5
)
−
3
(
+
1
5
)
x(x+15)-3(x+15)
x(x+15)−3(x+15)
3
Rewrite in factored form
(
+
1
5
)
−
3
(
+
1
5
)
x(x+15)-3(x+15)
x(x+15)−3(x+15)
(
−
3
)
(
+
1
5
)
(x-3)(x+15)
(x−3)(x+15)
Solution
(
−
3
)
(
+
1
5
)
Answered by
1
Answer:
Given :-
➪ x² + 12x - 45
Solution :-
➪ x² + 12x - 45 = 0
➭ x² + (15 - 3)x - 45 = 0
➭ x² + 15x - 3x - 45 = 0
➭ x(x + 15) - 3(x + 15) = 0
➭ (x + 15) (x - 3) = 0
➭ (x + 15) = 0
➭ x + 15 =0
➭ x = - 15
Either,
➭ (x - 3) = 0
➭ x - 3 = 0
➭ x = 3
∴ The answer of this question is x = - 15, 3
Similar questions