Math, asked by utkarshchatterjee, 30 days ago


{x}^{2}  + 18x + 30 = 2 \sqrt{ {x}^{2}  + 18x + 45}
Find the product of real roots​

Answers

Answered by BrainlyPopularman
165

GIVEN :

 \\ \rm \implies{x}^{2} + 18x + 30 = 2 \sqrt{ {x}^{2} + 18x + 45} \\

TO FIND :

• Product of real roots = ?

SOLUTION :

 \\ \rm \implies{x}^{2} + 18x + 30 = 2 \sqrt{ {x}^{2} + 18x + 45} \\

 \\ \rm \implies{x}^{2} + 18x + 30 = 2 \sqrt{ {x}^{2} + 18x + 30 + 15} \\

• Let's put x² + 18x + 30 = t

 \\ \rm \implies t= 2 \sqrt{t+15} \\

• Sequare on both sides –

 \\ \rm \implies t^2 = 4(t+15)\\

 \\ \rm \implies t^2 = 4t+60\\

 \\ \rm \implies t^2  - 4t - 60 = 0\\

 \\ \rm \implies t^2  - 10t  + 6t- 60 = 0\\

 \\ \rm \implies t(t-10)+6(t-10)= 0\\

 \\ \rm \implies (t + 6)(t-10)= 0\\

 \\ \rm \implies t=10(\checkmark), - 6(x)\\

When t = 10 :–

 \\ \rm \implies {x}^{2} + 18x + 30=10\\

 \\ \rm \implies {x}^{2} + 18x + 20 = 0\\

• It's has real roots , So –

 \\ \rm \implies Product \:  \: of \:  \:  roots =  \dfrac{20}{1}  = 20 \\

• Hence –

 \\\implies \large \pink{\boxed{\rm Product\:\:of\:\:Roots=20}}\\

Answered by Anonymous
84

Answer:

Given:-

{x}^{2} + 18x + 30 = 2 \sqrt{ {x}^{2} + 18x + 45}

To find:-

Product of real roots.

Solution:-

Let,

x² + 18x + 30 = t

t = 2 \sqrt{t + 15}

t² - 4t - 60 = 0

=> t = 10, - 6 ( t  \geqslant 0)

t = 10 = x² + 18x + 30

x² + 18x + 20 = 0

•°• Products of real roots = 20

Similar questions