Math, asked by saivarsh41, 10 days ago

x^{2} -3x+2=0,\frac{\alpha }{\beta +\frac{\beta }{\alpha } <br />

Answers

Answered by ripinpeace
9

Step-by-step explanation:

Correct question -

x^{2} -3x+2=0 \: , \:  \:  \:  \:  find \:  → \large\frac{ \alpha  }{ \beta  +   \frac{ \beta }{ \alpha } }

Solution -

 {x}^{2}  - 3x + 2 = 0

→ {x}^{2}  - x - 2x + 2 = 0

→x( x  - 1) - 2(x - 1) = 0

→(x - 2)(x - 1) = 0

→x = 1 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    ,  \:   \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: x = 2

Case 1 -

let \:  \:  \alpha  = 1 \:  \: and \:  \:  \beta  = 2

Now \:  , \: \large\frac{  \alpha  }{ \beta  +   \frac{ \beta }{ \alpha } } = \large\frac{ 1 }{ 2  +   \frac{ 2 }{ 1 } }

→\large\frac{  \alpha  }{ \beta  +   \frac{ \beta }{ \alpha } } = \large\frac{ 1 }{ 2   +  { 2 }}

→\large \orange{\frac{  \alpha  }{ \beta  +   \frac{ \beta }{ \alpha } } = \large\frac{ 1 }{ 4}}

Case 2 -

let \:  \:  \alpha  = 2 \:  \: and \:  \:  \beta  = 1

Now \:  , \: \large\frac{  \alpha  }{ \beta  +   \frac{ \beta }{ \alpha } } = \Large\frac{ 2 }{ 1  +   \frac{ 1 }{ 2 } }

→\large\frac{  \alpha  }{ \beta  +   \frac{ \beta }{ \alpha } } = \Large\frac{ 2 }{  \frac{2 + 1 }{ 2 } }

→ \large\frac{  \alpha  }{ \beta  +   \frac{ \beta }{ \alpha } } = \Large\frac{ 2 }{  \frac{3 }{ 2 } }

→\large\frac{  \alpha  }{ \beta  +   \frac{ \beta }{ \alpha } } = \Large\frac{ 2 × 2 }{{3 }}

→\large \green{\frac{  \alpha  }{ \beta  +   \frac{ \beta }{ \alpha } } = \Large\frac{ 4 }{{3 }}}

Similar questions