Math, asked by stubborn777, 5 months ago


x {}^{2}  + 4 \sqrt{3x}  - 15

Answers

Answered by MagicalLove
136

Step-by-step explanation:

 \bf \huge \underline \purple{Question:-}

 \huge \sf \:  {x}^{2}  + 4 \sqrt{3} x - 15

 \huge \sf \underline \purple{Answer:-}

 \sf \longmapsto \large \:  {x}^{2}  + 4 \sqrt{3} x - 15 = 0 \\

 \sf \longmapsto \large \: {x}^{2}  + 5 \sqrt{3} x -  \sqrt{3} x - 15 = 0

 \sf \longmapsto \large \:x(x + 5 \sqrt{3} ) -  \sqrt{3} (x + 5 \sqrt{3} ) = 0

 \sf \longmapsto \large \:(x -  \sqrt{3} )(x + 5 \sqrt{3} ) = 0

 \sf \longmapsto \large \:x -  \sqrt{3}  = 0 \:  \: and \:  \: x + 5 \sqrt{3}  = 0

 \sf \longmapsto \large \:x =  \sqrt{3}  \:  \: and \:  \: x =  - 5 \sqrt{3}

 \sf \large \: x \: should \:  \: not \: be \:  \: in \:  \: negative

 \therefore \sf \large \blue { x =  \sqrt{3} }

Answered by Anonymous
2

Answer:

This implies that

x2+2ax=4x−4a−13

or

x2+2ax−4x+4a+13=0

or

x2+(2a−4)x+(4a+13)=0

Since the equation has just one solution instead of the usual two distinct solutions, then the two solutions must be same i.e. discriminant = 0.

Hence we get that

(2a−4)2=4⋅1⋅(4a+13)

or

4a2−16a+16=16a+52

or

4a2−32a−36=0

or

a2−8a−9=0

or

(a−9)(a+1)=0

So the values of a are −1 and 9.

Similar questions