Answers
Answered by
0
Step-by-step explanation:
Answer:
\begin{gathered}Roots \:of\\\: given\: quadratic\: equation\: are\: ,\\x = 2a+b \: Or \: x = 2a-b\end{gathered}
Rootsof
givenquadraticequationare,
x=2a+bOrx=2a−b
Step-by-step explanation:
Given quadratic equation:
x²-4ax+4a²-b²=0
Finding roots of the quadratic equation By completing the square method:
Rearranging the equation, we get
=> x²-4ax+4a² = b²
x^{2}-2\times x \times 2a +(2a)^{2}=b^{2}x
2
−2×x×2a+(2a)
2
=b
2
\implies (x-2a)^{2}=b^{2}⟹(x−2a)
2
=b
2
\implies x-2a = ±\sqrt{b^{2}}⟹x−2a=±
b
2
\implies x-2a=±b⟹x−2a=±b
\implies x = 2a±b⟹x=2a±b
\implies x = 2a+b \: Or \: x = 2a-b⟹x=2a+bOrx=2a−b
Therefore,
x = 2a+b \: Or \: x = 2a-bx=2a+bOrx=2a−b
•••♪
Similar questions