Math, asked by MysteriesGirl, 5 hours ago

 {x}^{2} - 4x + 4 = 0 \\

Answers

Answered by SHINCHAN887
1

x

2

−4x+4=0

x

2

−2x−2x+4=0

x(x−2)−2(x−2)=0

(x−2)(x−2)=0

x=2,2 hope it's helpful if it is then please mark me as brainliest

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {x}^{2} - 4x + 4 = 0

can be rewritten as using splitting of middle terms,

\rm :\longmapsto\: {x}^{2} - 2x - 2x + 4 = 0

\rm :\longmapsto\:x(x - 2) - 2(x - 2) = 0

\rm :\longmapsto\:(x - 2)(x - 2) = 0

\bf\implies \:x = 2 \:  \: or \:  \: 2

Aliter Method [ Completing Squares method ]

Given Quadratic equation is

\rm :\longmapsto\: {x}^{2} - 4x + 4 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{2} - 4x +  {2}^{2}  = 0

\rm :\longmapsto\: {x}^{2} - 2 \times x \times 2 +  {2}^{2}  = 0

We know, .

\rm :\longmapsto\:\boxed{\tt{ \:  \: {x}^{2} - 2xy +  {y}^{2} =  {(x + y)}^{2} \:  \: }}

\rm :\longmapsto\: {(x - 2)}^{2}  = 0

\bf\implies \:x = 2 \:  \: or \:  \: 2

Aliter Method [ Quadratic Formula ]

Given quadratic equation is

\rm :\longmapsto\: {x}^{2} - 4x + 4 = 0

The solution of quadratic equation using Quadratic formula is

 \red{\rm :\longmapsto\:\boxed{\tt{ x =  \frac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}}}}

So, here,

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:b =  - 4

\rm :\longmapsto\:c =  4

So, on substituting the values, we get

\rm :\longmapsto\:x = \dfrac{ - ( - 4) \:  \pm \:  \sqrt{ {(4)}^{2} - 4(1)(4) } }{2 \times 1}

\rm :\longmapsto\:x = \dfrac{ 4 \:  \pm \:  \sqrt{ 0} }{2}

\rm :\longmapsto\:x = \dfrac{ 4 }{2}

\bf\implies \:x = 2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions