Math, asked by ranjanpatro0, 11 months ago


 {x}^{2}  + 6x - 16

Answers

Answered by Sharad001
36

Question:-

 \:

Solve this quadratic equation :

→ x² + 6x -16 = 0

Answer :-

→ x = 2 or - 8

Solution :-

We have ,

→ x² +6x - 16 = 0

Split the middle term

→ x² + (8 - 2)x - 16 = 0

→ x² + 8x - 2x - 16 = 0

→ x( x +8) -2(x + 8) = 0

→ ( x+ 8 )(x - 2) = 0

• Case (1) if -

→ x + 8 = 0

x = -8

• Case (2) if -

→ x -2 = 0

x = 2

hence , x = 2 or -8 .

Verification :-

(1) When x = -8

→ (-8)² + 6 × (-8) - 16 = 0

→ 64 - 48 - 16 = 0

→ 16 - 16 = 0

→ 0 = 0

(2) When x = 2

→ (2)² + 6×2 - 16 = 0

→ 4 + 12 -16 = 0

→ 16 - 16 = 0

→ 0 = 0

Hence verified .

Answered by manishpatel02
64

{\huge{\underline{\underline{\mathcal {\red{♡Question♡}}}}}}

 {x}^{2} + 6x - 16

==========================

• Solve this quadratic equation :-

→ x² + 6x -16 = 0

{\huge{\underline{\underline{\mathcal {\pink{♡Answer♡}}}}}}

→ x = 2 or - 8

{\huge{\underline{\underline{\mathcal {\green{♡Solution♡}}}}}}

We have ,

→ x² +6x - 16 = 0

middle term ,

=> x² + (8 - 2)x - 16 = 0

=> x² + 8x - 2x - 16 = 0

=> x( x +8) -2(x + 8) = 0

=> ( x+ 8 )(x - 2) = 0

• Case (1) if -

=> x + 8 = 0

=> x = -8

• Case (2) if -

=> x -2 = 0

=> x = 2

hence , x = 2 or -8 .

{\huge{\underline{\underline{\mathcal {\red{♡Verification♡}}}}}}

(1) When x = -8

=> (-8)² + 6 × (-8) - 16 = 0

=> 64 - 48 - 16 = 0

=> 16 - 16 = 0

=> 0 = 0

(2) When x = 2

=> (2)² + 6×2 - 16 = 0

=> 4 + 12 -16 = 0

=> 16 - 16 = 0

=> 0 = 0

Hence verified

 <marquee behavior=move bgcolor =red ><h1 >Thank You❤</h1></marquee >

 <marquee behavior=move bgcolor =pink ><h1 >Mr.Khiladi❤</h1></marquee >

Similar questions
Math, 1 year ago