Answers
Question:-
Solve this quadratic equation :
→ x² + 6x -16 = 0
Answer :-
→ x = 2 or - 8
Solution :-
We have ,
→ x² +6x - 16 = 0
Split the middle term
→ x² + (8 - 2)x - 16 = 0
→ x² + 8x - 2x - 16 = 0
→ x( x +8) -2(x + 8) = 0
→ ( x+ 8 )(x - 2) = 0
• Case (1) if -
→ x + 8 = 0
→ x = -8
• Case (2) if -
→ x -2 = 0
→ x = 2
hence , x = 2 or -8 .
Verification :-
(1) When x = -8
→ (-8)² + 6 × (-8) - 16 = 0
→ 64 - 48 - 16 = 0
→ 16 - 16 = 0
→ 0 = 0
(2) When x = 2
→ (2)² + 6×2 - 16 = 0
→ 4 + 12 -16 = 0
→ 16 - 16 = 0
→ 0 = 0
Hence verified .
==========================
• Solve this quadratic equation :-
→ x² + 6x -16 = 0
→ x = 2 or - 8
We have ,
→ x² +6x - 16 = 0
middle term ,
=> x² + (8 - 2)x - 16 = 0
=> x² + 8x - 2x - 16 = 0
=> x( x +8) -2(x + 8) = 0
=> ( x+ 8 )(x - 2) = 0
• Case (1) if -
=> x + 8 = 0
=> x = -8
• Case (2) if -
=> x -2 = 0
=> x = 2
hence , x = 2 or -8 .
(1) When x = -8
=> (-8)² + 6 × (-8) - 16 = 0
=> 64 - 48 - 16 = 0
=> 16 - 16 = 0
=> 0 = 0
(2) When x = 2
=> (2)² + 6×2 - 16 = 0
=> 4 + 12 -16 = 0
=> 16 - 16 = 0
=> 0 = 0
Hence verified