Math, asked by venurampati, 5 hours ago


 | {x}^{2} - 7x - 8 |  >  {x}^{2}  - 7x + 12 solve \: this \: inequality
solve in equality​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 | {x}^{2} - 7x  - 8 |  >  {x}^{2} - 7x + 12

We have, the following two cases,

\tt\large\bold{•\:\:WHEN\:\:(x^2-7x-8)>0\::}

We know, if y>0, then, |y|=y

So,

 {x}^{2}  - 7x  - 8 >  {x}^{2} - 7x + 12

 \implies - 8 >   12

  \bold{ \red{ \mathbb{WHICH  \:  \:   \:  IS  \:  \:    \:  NOT  \:  \:  \:  POSSIBLE}}}

\tt\large\bold{•\:\:WHEN\:\:(x^2-7x-8)<0\::}

We know, if y<0, then, |y|=-y

So,

 -  {x}^{2}  + 7x + 8 >  {x}^{2} - 7x + 12 \\

  \implies  2{x}^{2} - 14x + 4 < 0 \\

  \implies  {x}^{2} - 7x + 2 < 0 \\

  \implies   \bigg \{x -  \bigg( \frac{7 -  \sqrt{41} }{2} \bigg) \bigg \} \bigg \{x -  \bigg( \frac{7  +   \sqrt{41} }{2} \bigg) \bigg \}< 0 \\

  \implies  x  \in  \bigg( \frac{7 -  \sqrt{41} }{2}  ,\frac{7  +   \sqrt{41} }{2} \bigg)\\

Similar questions