Math, asked by harrdiksharma828, 11 months ago


x  ^{2}   -  \frac{1}{x ^{2} }   = 2find \sqrt{x}  +   \sqrt \frac{1}{x}

Answers

Answered by BrainlyPopularman
2

Answer:

 {x} -  \frac{1}{x}  =  \sqrt{ {x}^{2}  +  \frac{1}{ {x}^{2}  }  - 2}  \\  \\x +  \frac{1}{x}  =  \sqrt{ {x}^{2} +  \frac{1}{ {x}^{2}  }  + 2  }  \\  \\  =  > multiply \:  \: them -  \\  \\  {x}^{2}  -  \frac{1}{ {x}^{2} }  =  \sqrt{ {( {x}^{2}  +  \frac{1}{ {x}^{2} } )}^{2}  - 4}  \\  \\  =  > 2 =   \sqrt{ {( {x}^{2}  +  \frac{1}{ {x}^{2} } )}^{2}  - 4}  \\  \\  =  > 8 =  {( {x}^{2}  +  \frac{1}{ {x}^{2} } )}^{2}  \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2 \sqrt{2}  \\  \\ but -   \\  \\  =  >  {(x +  \frac{1}{x}) }^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2  \\  \\ =  >  {(x +  \frac{1}{x} })^{2}  = 2 \sqrt{2}  + 2 \\  \\  =  > x +  \frac{1}{x}  =  \sqrt{2 \sqrt{2} + 2 }   \\  \\  =  >   {( \sqrt{x} +  \frac{1}{ \sqrt{x} } ) }^{2}  = x +  \frac{1}{x}  + 2 \\  \\  =  >  { (\sqrt{x}  +  \frac{1}{ \sqrt{x} }) }^{2}  =  \sqrt{2 \sqrt{2}  + 2}  + 2 \\  \\  =  >  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =  \sqrt{ \sqrt{2 \sqrt{2} + 2 }  + 2}

Here is your method to solve...

Attachments:
Similar questions