Math, asked by Anmol8822, 7 months ago

\\ x^{2} \neqπ∅⇔ω⊃⊥⊂↑⇔∈∈∈∈∈√ anmol8822\\ x^{2} \neq \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx\\ x^{2} \neq \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx

Answers

Answered by Anonymous
3

Step-by-step explanation:

AnSwEr :-

2 or -6.

Given :-

The distance between the points A(2, -2) and B(-1, x) is equal to 5.

To Find :-

Value of x

SoluTion :-

Here,

x1 = 2

y1 = -2

x2 = -1

y2 = x

Formula for finding distance between two points is :-

\sqrt{{(x2 - x1) {}^{2} } + (y2 - y1) {}^{2} }

(x2−x1)

2

+(y2−y1)

2

Put the values in the formula :-

√ (- 1 - 2)² + {x - (-2)}² = 5

→ √ { (-3)² + (x + 2)² } = 5

→ √{ 9 + (x + 2)² } = 5

→ 9 + (x + 2)² = 25

→ (x + 2)² = 16

→ x + 2 = ± 4

_____________________

x + 2 = 4

→ x = 4 - 2

→ x = 2

_____________________

x + 2 = - 4

→ x = - 4 - 2

→ x = - 6

Hence, the value of x is 2 or -6.

__________________________

❄❄ ♥♥ जय हिन्द

वन्दे मातरम्

इंक़लाब ज़िन्दाबाद ♥♥ ❄❄

Similar questions