Math, asked by ArghyaGain, 7 months ago


 {x}^{2}  - ( \sqrt{2}  + i)x +  \sqrt{2}i  = 0
Using Quadric Formula.​

Answers

Answered by Anonymous
37

\huge \pink \star{ \green{ \boxed{ \boxed{ \boxed{ \purple{ \mathfrak{Answer :}}}}}}} \pink\star

\huge\underline{\underline{\texttt{\pink{Refer\:the\:picture\:}}}}

Attachments:
Answered by nilesh102
18

{ \bf{ \huge{\underline{ \pink{\underline{\red{solution} : }}}} - }    } \\  \\ </p><p>{\mathtt { \dashrightarrow{ \purple{ {x}^{2} -( \sqrt{2}  + i \: )x  \: +  \:  \sqrt{2} \: i  = 0}}}} \\  {\mathtt{ \underline{ \pink{we \: can \: write \: is \: as}}}}\\ {\mathtt { \dashrightarrow{ \purple{ {x}^{2} - (  i +  \sqrt{2})x +   \sqrt{2} \:  \:  \: i  =  \: 0}}}}  \\   \\ {\mathtt { \dashrightarrow{ \purple{ {x}^{2}  -  i  \:x  -   \sqrt{2 }  \: x +  \sqrt{2} \: i   \: = \:  \:  0}}}} \\  \\ {\mathtt { \dashrightarrow{ \purple{ x(x  -  i) \:  -   \: \sqrt{2} \:  (x - i)  \:  \: = \:  \:  0}}}} \\  \\ {\mathtt { \dashrightarrow{ \purple{(x - \sqrt{2} ) \: (x  -  i)  \:  \: =  \:  \: 0}}}}  \\  \\ {\mathtt { \dashrightarrow{ \purple{(x - \sqrt{2} ) \: = \:  \:  0\:   \: { \red{or}}  \:  \: (x  -  i)  \:=  \:  \: 0}}}}  \\  \\ {\mathtt { \dashrightarrow{ \purple{x =  \sqrt{2} \: \:   \:  \: { \red{or }} \:   \: \: \: x = i }}}} </p><p></p><p>

Note:- " i " is imaginary number.

i hope it helps you.

Similar questions