Math, asked by prachim463, 3 months ago


x = 2 +  \sqrt{3}  \: find \\  \frac{1}{x} \\ x +  \frac{1}{x}   \\ x -  \frac{1}{x}  \\   {x}^{2}  +  \frac{1}{x2}

Answers

Answered by vipashyana1
0

Answer:

x = 2 +  \sqrt{3}  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} } \\ x +  \frac{1}{x}\\ = 2 +  \sqrt{3}  +  \frac{1}{2 +  \sqrt{3} }  \\  =  \frac{ {(2 +  \sqrt{3}) }^{2}  + 1}{2 +  \sqrt{3} }  \\  =  \frac{4 + 3 + 4 \sqrt{3} + 1 }{2 +  \sqrt{3} } \\  =  \frac{8 +  4\sqrt{3} }{2 +  \sqrt{3} }   \\  =  \frac{4(2 +  \sqrt{3} )}{(2 +  \sqrt{3}) }  \\  = 4 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  =  {(2 +  \sqrt{3} )}^{2}  +  \frac{1}{ {(2 +  \sqrt{3} )}^{2} }  \\  = 4 + 3 + 4 \sqrt{3}  +  \frac{1}{4 + 3 + 4 \sqrt{3} }  \\  = 7 + 4 \sqrt{3}  +  \frac{1}{7 + 4 \sqrt{3} }  \\  =  \frac{ {(7 + 4 \sqrt{3} )}^{2} + 1 }{7 + 4 \sqrt{3} }  \\  =  \frac{49 + 48 + 56 \sqrt{3}  + 1}{7 + 4 \sqrt{3} }  \\  =  \frac{98 + 56 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  =  \frac{14(7 + 4 \sqrt{3} )}{(7 + 4 \sqrt{3}) }  \\  = 14

Sorry, but I am not getting the answer for x-1/x.

Similar questions