Math, asked by ritu29294p948nj, 1 year ago


x = 2 +  \sqrt{3} find \: the \: value \: x {}^{2}  +   \frac{1}{ {x}^{2} }

Answers

Answered by abhi569
3
x = 2 + √3 

x² = (2 + 3)²

x² = 4 + 3 + 43

x
²  = 7 + 43
-------------------

1/x = 1/(2 + √3)

               By Rationalization

1/x = (2 - √3) / [ (2)² - (√3)²]


1/x = (2 - √3)/ (4 - 3)

1/x = (2 - √3)/1 

1/x = 2 - √3 

1/x² = (2 - 3)² 

1/x² = 4 + 3 -4√3

1/x² = 7 - 4√3


=========================

Now,

x²  + 1/x² 

7 + 4√3 + 7 - 4√3 

7 + 7 

14 


i hope this will help you


(-:


abhi569: (-:
Anonymous: Copy pen se karo to solve bhi jaldi Hoga aur user ki jaldi samaj bhi aye GA.. well, awesomely explained.. ;)
abhi569: Areee......4g ka recharge khtam hai....mera net < 2g
abhi569: Isse agar photo bheji to...2 din to aisa he lg jayege..pir bhi photo nhi jayege
abhi569: (-:
Anonymous: Haha.. ok.. I can understand.. I am a old 2g uninor user ;)
abhi569: Hahaha
Answered by ria113
4
Heya !!

Here's your answer..
____________________

Given :- x = 2 + √3

To Find :- x² + 1/x²

Solution :-
x = 2 +  \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{x}  = 2 -  \sqrt{3}  \\  \\ x +  \frac{1}{ x}  = 2  +  \sqrt{3}  + 2 -  \sqrt{3}  \\  \\ x +  \frac{1}{x}  = 4 \\  \\ take \:  \: square \:  \: on \:  \: both \:  \: side \\  \\  {(x +  \frac{1}{x} )}^{2}  =  {(4)}^{2}  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2x \times  \frac{1}{x}  = 16 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 16 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 16 - 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 14 \\

_____________________

Hope it helps..
Thanks :)
Similar questions