Math, asked by chitanebanumathi, 3 months ago


 {x}^{2}
-25/9​

Answers

Answered by wwwuamuam
103

 \huge \red{ \fbox {✿Question✿}}

 {x}^{2}  -  \frac{25}{9}

 \pink{ \fbox {✿Formula✿}}

 {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

\huge \purple{ \fbox {✿Answer✿}}

 {x}^{2}  -  \frac{25}{9}

 =  {x}^{2}  - ( \frac{5}{3} ) {}^{2}

 = (x +  \frac{5}{3} )(x -  \frac{5}{3} )

Answered by MrImpeccable
56

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  •  x^2 - \dfrac{25}{9}

Solution:

 \longrightarrow x^2 - \dfrac{25}{9} \\\\\implies x^2 - \dfrac{5^2}{3^2} \\\\\implies x^2 - \left(\dfrac{5}{3}\right)^2 \\\\\bf{\implies \left(x - \dfrac{5}{3}\right)\left(x + \dfrac{5}{3}\right)} </p><p>

Formula used:

  • a^2 - b^2 = (a+b)(a-b)

Learn More:

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\bf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\bf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\bf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) - B^{3}\\\\8)\bf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\9)\bf\: A^{3} - B^{3} = (A-B)(A^{2} + AB + B^{2})\\\\ \end{minipage}}

Similar questions