Math, asked by chinmay19062009, 7 months ago

x^{2} x^{2} \neq \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \sqrt[n]{x} \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta \\ \geq \sqrt[n]{x} \alpha \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx x^{2} \left \{ {{y=2} \atop {x=2}} \right. \pi \sqrt[n]{x}

Answers

Answered by magicalunicorn0
0

Answer:

kfzfistishlfgozigLHZZGOZYODLFL

Similar questions