please help me ❤️
Answers
Correct Question :-
x³ + y³+ z³ - 3xyz = (x + y+ z) [(x - y)² + (y - z)² + (z - x)³]
*To prove this identity, we need to take help of another identity*
We know that:-
x³ + y³ + z³- 3xyz
= (x + y + z) (x² + y² + z² - xy - yz - zx)
Now, we just need to change (x² + y² + z² - xy - yz - zx) as the sum of square term.
By solving further :-
x² + y² + z² - xy - yz - zx
= 1/2 (2x² + 2y² + 2z² - 2xy - 2yz - 2zx)
= 1/2 (x - 2 x y +y² +y² - 2yz + z² + z² - 2zx + x)
= 1/2 [(x - y)² + (y - z)² + (z - x)³]
So we get:-
x³ + y³+ z³ - 3xyz = (x + y+ z) [(x - y)² + (y - z)² + (z - x)³]
*Hence,Proved*
Answer:
x³ + y³+ z³ - 3xyz = \dfrac{1}{2}
2
1
(x + y+ z) [(x - y)² + (y - z)² + (z - x)³]
*To prove this identity, we need to take help of another identity*
We know that:-
x³ + y³ + z³- 3xyz
= (x + y + z) (x² + y² + z² - xy - yz - zx)
Now, we just need to change (x² + y² + z² - xy - yz - zx) as the sum of square term.
By solving further :-
x² + y² + z² - xy - yz - zx
= 1/2 (2x² + 2y² + 2z² - 2xy - 2yz - 2zx)
= 1/2 (x - 2 x y +y² +y² - 2yz + z² + z² - 2zx + x)
= 1/2 [(x - y)² + (y - z)² + (z - x)³]
So we get:-
x³ + y³+ z³ - 3xyz = \dfrac{1}{2}
2
1
(x + y+ z) [(x - y)² + (y - z)² + (z - x)³]
*Hence,Proved*