Math, asked by janson110109, 1 year ago

x^{4}+17x^{2} +23=0
Find x

Answers

Answered by BrainlyPopularman
2

Answer:

PUT X² = t

NEW EQUATION -

 {t}^{2}  + 17t  + 23 = 0

SOLUTION OF EQUATION -

t =  \frac{ - 17 + \binom{ + }{ - } \sqrt{ {(17)}^{2}  - 4 \times 23}  }{2}

t =  \frac{ - 17 +  \binom{ +  }{ - }  \sqrt{197} }{2}

t =  \frac{ - 17 +  \sqrt{197} }{2}  \:  \: and \:  \: t =  \frac{ - 17 -  \sqrt{197} }{2}

SO ,

x =  \sqrt{ \frac{ - 17 +  \sqrt{197} }{2} } \:  \: and \:  \: x =  \sqrt{ \frac{ - 17 -   \sqrt{197}  }{2} }

HOPE YOU LIKE IT.....

Answered by Rohit18Bhadauria
1

\rule{300}{2}

\huge\boxed{\underline{\mathcal{\red{A}\green{N}\pink{S}\orange{W}\blue{E}\pink{R:-}}}}

See this attachment

This is the best possible answer

\large{\boxed{\mathbf\pink{\fcolorbox{cyan}{black}{Hope\:you\:have}}}}

\large{\boxed{\mathbf\pink{\fcolorbox{red}{yellow}{Understood}}}}

<marquee>♥️Please mark it as♥️</marquee>

\huge\underline\mathcal\red{Brainliest}

</p><p>\huge{\boxed{\mathbb\green{\fcolorbox{red}{blue}{Thank\:You}}}}

\rule{300}{2}

Attachments:
Similar questions