Math, asked by rohitrajbhar694, 9 months ago


 {x}^{4}  +  {x}^{2}  - 1 = 0

Answers

Answered by arumugham2019
0

Answer:

Step-by-step explanation:

x^4 + x^2 - 1 = 0

x^4 + x^2 = 1

x doesnt exist since any number multiplied by itself even number of times (like 2^2, 2^4, 2^6 and so on), will always be positive.

since only 1/2 added twice gives 1, x doesnt exist

Answered by chaitragouda8296
0

Given :

 {x}^{4}  +  {x}^{2}  - 1 = 0

To Prove :

x = ?

Formula needed :

 =  =  >  \:  \:  \:  \:  \:  {b}^{2}  - 4ac \\  \\ x \:  =  \frac{ - b \frac{ + }{ - }  \sqrt{ {b}^{2}  - 4ac} }{2a}

Solution :

write \:  \:  \:  \:  </strong><strong>{</strong><strong>(</strong><strong>x</strong><strong>)</strong><strong> </strong><strong>}^{4} </strong><strong> </strong><strong>\</strong><strong>:</strong><strong> </strong><strong>\</strong><strong>:</strong><strong> </strong><strong>\</strong><strong>:</strong><strong> </strong><strong>\</strong><strong>:</strong><strong> </strong><strong> </strong><strong> </strong><strong> in \:  \: the \:  \: form \:  \: of \:  \:  { </strong><strong>(</strong><strong>{x}^{2}</strong><strong>)</strong><strong> </strong><strong>}^{2}

Therefore ,,,, we get ,,,,,

 {</strong><strong>(</strong><strong> {x}^{2} </strong><strong>)</strong><strong>}^{2}  +  {x}^{2}  - 1 = 0 \\  \\

This is in the form ,,,

a {x}^{2}  + bx + c = 0 \\  \\ where \:  \:  \:  \:  \:  \:  \:  \: \\  x =  {x}^{2} \\  a = 1 \\ b = 1 \\ c = </strong><strong>-</strong><strong> </strong><strong>1

 </strong><strong>\</strong><strong>\</strong><strong> </strong><strong>\</strong><strong>\</strong><strong> </strong><strong>\</strong><strong>\</strong><strong> </strong><strong>=  {b}^{2}  - 4ac \\  \\  =  {(1)}^{2}  - 4 \times 1 \times  - 1 \\  \\  = 1 + 4 \\  \\</strong><strong> </strong><strong>=</strong><strong> 5

x =  \frac{ - b \frac{ + }{ - }  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  {x}^{2} =  \frac{ - 1 \frac{ + }{ - }  \sqrt{5} }{2 \times 1}  \\  \\  {x}^{2} =  \frac{ - 1 \frac{ + }{ - } \sqrt{5}  }{2}  \\  \\  x =  \sqrt{ \frac{ - 1 \frac{ + }{ - } \sqrt{5}  }{2} }

where ,,,,

x =  \sqrt{ \frac{ - 1 +  \sqrt{5} }{2} }  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \\  \\  \\ x =   \sqrt{ \frac{ - 1 -  \sqrt{</strong><strong>5</strong><strong>} }{2} }

Hope it's helpful ......

Please mark it as Brainliest ......

Similar questions