Math, asked by shaarav2006, 2 months ago


x + 7y = 10 \\ 3x - 2y = 7

Answers

Answered by BrainIyInfo
16

Equation 1  \downarrow

x + 7y = 10 \\

We can take the value of x to be 3 and the value of y to be 1.

Thus, the solution will be as follows;

x + 7y = 10

3 + (7)(1) = 10

3 + 7 = 10

10 = 10

L.H.S = R.H.S

  \\  \\

Equation 2  \downarrow

3x - 2y = 7

We can take the value of x to be 1 and the value of y to be -2.

Thus, the solution will be as follows;

3x – 2y = 7

(3)(1) – (2)(-2) = 7

3 – (-4) = 7

3 + 4 = 7

7 = 7

L.H.S = R.H.S

 \\


pandaXop: Nice
Anonymous: Great
Mysterioushine: Nice!
Answered by silentlover45
28

\large\underline\mathrm{Given:-}

  • \: \: \: \: \: \: \: \: {x} \: + \: {7y} \: \: = \: \: {10}
  • \: \: \: \: \: \: \: \: {3x} \: - \: {2y} \: \: = \: \: {7}

\large\underline\mathrm{To \: find:-}

  • \: \: \: \: \: \: \: \: find \: \: the \: \: value \: \: of \: \: x \: \: and \: \: y .\: ?

\large\underline\mathrm{Solution:-}

  • \: \: \: \: \: \: \: \: {x} \: + \: {7y} \: \: = \: \: {10} \: \: \: \: \: \: \: (i).
  • \: \: \: \: \: \: \: \: {3x} \: - \: {2y} \: \: = \: \: {7} \: \: \: \: \: \: \: (ii).

\: \: \: \: \: \: \: \: From \: \: equation \: \: (ii).

\: \: \: \: \: \: \leadsto \: \: {3x} \: - \: {2y} \: \: = \: \: {7}

\: \: \: \: \: \: \leadsto \: \: {3x} \: \: = \: \: {7} \: + \: {2y}

\: \: \: \: \: \: \leadsto \: \: {x}  \: \: = \: \: \frac{({7} \: + \: {2y})}{3} \: \: \: \: \: \: \: \: (iii).

\: \: \: \: \: \: Put \: \:  the \: \: value \: \: of \: \: x \: \: in \: \: equation \: \: (i), \: \: we \: \: get.

\: \: \: \: \: \: \leadsto \: \: {x} \: + \: {7y} \: \: = \: \: {10}

\: \: \: \: \: \: \leadsto \: \: { \frac{({7} \: + \: {2y})}{3} } \: + \: {7y} \: \: = \: \: {10}

\: \: \: \: \: \: \leadsto \: \: { \frac{({7} \: + \: {2y} \: + \: {21y})}{3} } \: \: = \: \: {10}

\: \: \: \: \: \: \leadsto \: \: { \frac{({7} \: + \: {23y})}{3} } \: \: = \: \: {10}

\: \: \: \: \: \: \leadsto \: \: {7} \: + \: {23y} \: \: = \: \: {10} \: \times \: {3}

\: \: \: \: \: \: \leadsto \: \: {7} \: + \: {23y} \: \: = \: \: {30}

\: \: \: \: \: \: \leadsto \: \: {23y} \: \: = \: \: {30} \: - \: {7}

\: \: \: \: \: \: \leadsto \: \: {23y} \: \: = \: \: {23}

\: \: \: \: \: \: \leadsto \: \: {y} \: \: = \: \: \cancel{\frac{23}{23}}

\: \: \: \: \: \: \leadsto \: \: {y} \: \: = \: \: {1}

\: \: \: \: \: \: Put \: \: the \: \: value \: \: of \: \: y \: \: in \: \: Equation \: \:  (i), \: \: we \: \: get.

\: \: \: \: \: \: \leadsto \: \: {x} \: + \: {7y} \: \: = \: \: {10}

\: \: \: \: \: \: \leadsto \: \: {x} \: + \: {7}{(1)} \: \: = \: \: {10}

\: \: \: \: \: \: \leadsto \: \: {x} \: + \: {7y} \: \: = \: \: {10}

\: \: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: {10} \: - \: {7}

\: \: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: {3}

\: \: \: \: \: \: Hence, \: \: {x} \: \: = \: \: {3} \: \: and \: \: {y} \: \: = \: \: {1}.

Similar questions