Math, asked by holybangtan77, 9 months ago


x = a \sin( \alpha  )  + b \cos( \alpha  ) \\  \\ y = a \cos( \alpha  )  + b \sin( \alpha )
prove that:
 {x}^{2}  +  {y}^{2}  =  {a}^{2}  +  {b}^{2}

Answers

Answered by Anonymous
38

Given :

▪ x = a(sinα) + b(cosα)

▪ y = a(cosα) + b (sinα)

To Prove :

▪ x² + y² = a² + b²

Explanation :

LHS :

= x² + y²

= [a(sinα) + b(cosα)]² + [a(cosα) + b (sinα)]²

= a²sin²α + b²cos²α + a²cos²α + b²sin²α

= a²(sin²α + cos²α) + b²(sin²α + cos²α)

we know that, sin²Φ + cos²Φ = 1

= a²(1) + b²(1)

= a² + b² = RHS

Hence Proved !!

Learn more :

▪ sin²Φ + cos²Φ = 1

▪ sec²Φ - tan² = 1

▪ cosec²Φ - cot²Φ = 1

▪ sin2Φ = 2(sinΦ)(cosΦ)

▪ cos2Φ = cos²Φ - sin²Φ

Answered by Anonymous
44

\huge {\purple {\fbox {\bigstar {\mathbf {\red {hello\:mate}}}}}}

___________________________________________________

\huge {\purple {\fbox {\bigstar {\mathbf {\red {ur\: question}}}}}}

\huge {\mathbf {\purple {Q.}}}}x = a \sin( \alpha ) + b \cos( \alpha ) \\ \\ y = a \cos( \alpha ) + b \sin( \alpha )

prove that:

 {x}^{2} + {y}^{2} = {a}^{2} + {b}^{2}

___________________________________________________

\huge {\purple {\fbox {\bigstar {\mathbf {\red {ur\: answer✓}}}}}}

\huge\purple{\text{given}}

▪ x = a(sinα) + b(cosα)

▪ y = a(cosα) + b (sinα)

\pink{\text{to\:prove,}}

▪ x² + y² = a² + b²

 \tt\implies LHS

= x² + y²

= [a(sinα) + b(cosα)]² + [a(cosα) + b (sinα)]²

= a²sin²α + b²cos²α + a²cos²α + b²sin²α

= a²(sin²α + cos²α) + b²(sin²α + cos²α)

we know that, sin²Φ + cos²Φ = 1

= a²(1) + b²(1)

= a² + b² = RHS

\huge{\blue{\fbox{\purple{\bigstar{\mathbf{\red{ a^2 + b^2 = RHS}}}}}}}

Hence Proved

___________________________________________________

ʙᴇ ʙʀᴀɪɴʟʏ

\huge\star\:\:\bf\undeline\purple{hope\:helps\:you}\\

Similar questions