prove that:
Answers
Given :
▪ x = a(sinα) + b(cosα)
▪ y = a(cosα) + b (sinα)
To Prove :
▪ x² + y² = a² + b²
Explanation :
LHS :
= x² + y²
= [a(sinα) + b(cosα)]² + [a(cosα) + b (sinα)]²
= a²sin²α + b²cos²α + a²cos²α + b²sin²α
= a²(sin²α + cos²α) + b²(sin²α + cos²α)
we know that, sin²Φ + cos²Φ = 1
= a²(1) + b²(1)
= a² + b² = RHS
Hence Proved !!
Learn more :
▪ sin²Φ + cos²Φ = 1
▪ sec²Φ - tan² = 1
▪ cosec²Φ - cot²Φ = 1
▪ sin2Φ = 2(sinΦ)(cosΦ)
▪ cos2Φ = cos²Φ - sin²Φ
___________________________________________________
prove that:
___________________________________________________
▪ x = a(sinα) + b(cosα)
▪ y = a(cosα) + b (sinα)
▪ x² + y² = a² + b²
= x² + y²
= [a(sinα) + b(cosα)]² + [a(cosα) + b (sinα)]²
= a²sin²α + b²cos²α + a²cos²α + b²sin²α
= a²(sin²α + cos²α) + b²(sin²α + cos²α)
we know that, sin²Φ + cos²Φ = 1
= a²(1) + b²(1)
= a² + b² = RHS
Hence Proved
___________________________________________________