Math, asked by nik20hil, 9 months ago


x { \cos}^{2} (y) dx + \tan(y)dy = 0

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

x  \: \cos^{2} (y)  \: dx +  \tan(y) \: dy = 0

 =  > 1 + x \:  \tan(y)  \:  \sec^{2} (y)  \frac{dy}{dx}  = 0

 =  >  \tan(y)  \sec^{2} (y)  \frac{dy}{dx}  =  \frac{ - 1}{x}

 =  >  \tan(y)  \sec^{2} (y)  \: dy =  \frac{ - 1}{x} dx

Integrating both sides,

  =  > \int\tan(y)  \sec^{2} (y) dy =   - \int \frac{1}{x}dx

 \frac{ \tan^{2} (y) }{2}  =  -  log(x)

  = >  \tan^{2} (y)  +  log( {x}^{2} )+c  = 0

Similar questions