Math, asked by Anonymous, 9 hours ago


x \: dx + y \: dy +  ({x}^{2}  +  {y}^{2}  )dx= 0

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\:xdx + ydy + ( {x}^{2} +  {y}^{2})dx = 0

can be rewritten as

\rm :\longmapsto\:xdx + ydy  =  -  ( {x}^{2} +  {y}^{2})dx

\rm :\longmapsto\:\dfrac{xdx \:  +  \: ydy}{ {x}^{2}  +  {y}^{2} } =  -  \: dx

On multiply both sides by 2,

\rm :\longmapsto\:\dfrac{2xdx \:  +  \: 2ydy}{ {x}^{2}  +  {y}^{2} } =  - 2 \: dx

can be further rewritten as

\rm :\longmapsto\:\dfrac{d( \:  {x}^{2}  +  \:  {y}^{2} )}{ {x}^{2}  +  {y}^{2} } =  - 2 \: dx

can be further rewritten as

\rm :\longmapsto\:d \: \bigg( log( {x}^{2}  +  {y}^{2} )  \bigg) =  -2  \: dx

On integrating both sides, we get

\rm :\longmapsto\: log( {x}^{2}  +  {y}^{2}) \:  =  \:   - 2 \: x  \:  +  \: c

\rm :\longmapsto\: log( {x}^{2}  +  {y}^{2}) \:   + 2 \: x \: =  \: c

Additional Information :-

 \red{ \boxed{ \sf{ \:d(xy) = ydx \: +   \: xdy }}}

 \red{ \boxed{ \sf{ d( \frac{y}{x} )\:  =  \: \dfrac{xdy - ydx}{ {x}^{2} } }}}

 \red{ \boxed{ \sf{ d( \frac{x}{y} )\:  =  \: \dfrac{ydx - xdy}{ {y}^{2} } }}}

 \red{ \boxed{ \sf{d \:  {tan}^{ - 1}  \frac{y}{x}  \:  =  \: \dfrac{xdy - ydx}{ {x}^{2} +  {y}^{2}  } }}}

 \red{ \boxed{ \sf{d \:  {tan}^{ - 1}  \frac{x}{y}  \:  =  \: \dfrac{ydx - xdy}{ {x}^{2} +  {y}^{2}  } }}}

 \red{ \boxed{ \sf{d\:log ( {x}^{2}+{y}^{2})\:  =  \: \dfrac{2xdx + 2ydy}{ {x}^{2} +  {y}^{2}  } }}}

Similar questions