Math, asked by antimattergold37, 3 months ago

x=\frac{1}{2+\sqrt{3} } Find Value of 2x^{3} - 7x^{2} -2x+1

Please give proper answer with explaination

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\:x = \dfrac{1}{2 +  \sqrt{3} }

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:Value \: of \:  {2x}^{3}  -  {7x}^{2}  - 2x + 1

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{ \bf \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = \dfrac{1}{2 +  \sqrt{3} }

On rationalizing the denominator, we get

\rm :\longmapsto\:x = \dfrac{1}{2 +  \sqrt{3} }  \times \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

\rm :\longmapsto\:x = \dfrac{2 -  \sqrt{3} }{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }

\rm :\longmapsto\:x = \dfrac{2 -  \sqrt{3} }{4 - 3}

\rm :\longmapsto\:x = 2 -  \sqrt{3}

\rm :\longmapsto\:x - 2 = -  \sqrt{3}

On squaring both sides, we get

\rm :\longmapsto\: {(x - 2)}^{2} =  {( -  \sqrt{3}) }^{2}

\rm :\longmapsto\: {x}^{2} + 4 - 4x = 3

\rm :\longmapsto\: {x}^{2} + 4 - 4x  - 3  = 0

\rm :\longmapsto\: {x}^{2} - 4x + 1  = 0 -  -  - (1)

Now, Consider,

\rm :\longmapsto \:  {2x}^{3}  -  {7x}^{2}  - 2x + 1

can be rewritten as

 \rm \:  =  \:  \:  {2x}^{3}  + ( \red{ \rm -  {8x}^{2}  +  {x}^{2}}) + ( \red{ \rm \:  - 4x +2x}) + 1

\rm : =  \:  \:  \:  {2x}^{3}  -  {8x}^{2} +  {x}^{2}   - 4x + 2x + 1

\rm : =  \:  \:  \: ( {2x}^{3}  -  {8x}^{2}  + 2x) +  ({x}^{2}-4x+1)

 \rm \:  =  \:  \: 2x( {x}^{2} - 4x + 1) + 0  \:  \:  \:  \{ \: using \: (1) \:  \}

 \rm \:  =  \:  \: 2x \times 0 \:  \:  \:  \:  \{ \: using \: (1) \:  \}

\bf\implies \:\:Value \: of \:  {2x}^{3}  -  {7x}^{2}  - 2x + 1 = 0

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions