Math, asked by Anonymous, 7 months ago


x +  \frac{1}{x}  = 6
Find the value of
 {x}^{2}  +  \frac{1}{ {x}^{2} } \:  and  \: {x}^{2}  -  \frac{1}{ {x}^{2} }

Answers

Answered by Tushi15
6

Answer:

As x + 1/x = 6

square on both terms

(x + 1/x)² = (6)² {(a+b)² = a² + b² + 2ab)}

x² + 1/x² + 2×x×1/x = 36 {x will be cancelled}

x² + 1/x² + 2 = 36

x² + 1/x² = 36 - 2 = 34

Do the same in x - 1/x by prop. a² - 2ab + b²

Answered by jaidansari248
0

Answer:

x +  \frac{1}{x}  = 6 .......(i)\\ 1  \} \:  \: squaring \: both \: side \: of \: eq(i) \\   {(x +  \frac{1}{x}) }^{2} = 6 {}^{2}   \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2x \times  \frac{1}{x}  = 36 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36 \\  =  >  {x}^{2}  +  \frac{1 }{ {x}^{2} }  = 36 - 2 = 34

Similar questions