Math, asked by Najirpirjade, 3 months ago


x =  \frac{2}{2 -  \frac{1}{5} -  \frac{1}{2}}  - 1 \\ y =  \frac{1}{3 -  \frac{1}{3} -  \frac{1}{4} + 1  }
Find:
 \frac{x}{3}  -  \frac{y}{2}

Attachments:

Answers

Answered by EthicalElite
73

Given :

  • \sf x = \dfrac{2}{2 - \dfrac{1}{5} - \dfrac{1}{2}} - 1

  • \sf y = \dfrac{1}{3 - \dfrac{1}{3} - \dfrac{1}{4}} + 1

To Find :

  •  \sf \dfrac{x}{3} - \dfrac{y}{2}

Solution :

We have :

  • \sf x = \dfrac{2}{2 - \dfrac{1}{5} - \dfrac{1}{2}} - 1 \: -(1)

  • \sf y = \dfrac{1}{3 - \dfrac{1}{3} - \dfrac{1}{4}} + 1 \: -(2)

Solving equation (1) :

\sf : \implies x = \dfrac{2}{2 - \dfrac{1}{5} - \dfrac{1}{2}} - 1

\sf : \implies x = \dfrac{2}{\dfrac{2\times 10}{10} - \dfrac{1 \times 2}{5 \times 2} - \dfrac{1 \times 5}{2 \times 5}} - 1

\sf : \implies x = \dfrac{2}{\dfrac{20}{10} - \dfrac{2}{10} - \dfrac{5}{10}} - 1

\sf : \implies x = \dfrac{2}{\dfrac{20- 2 - 5}{10}} - 1

\sf : \implies x = \dfrac{2}{\dfrac{20 - 7}{10}} - 1

\sf : \implies x = \dfrac{2}{\dfrac{13}{10}} - 1

\sf : \implies x = \dfrac{2}{13} \times 10 - 1

\sf : \implies x = \dfrac{20}{13} - 1

\sf : \implies x = \dfrac{20}{13} - \dfrac{13}{13}

\sf : \implies x = \dfrac{20 - 13}{13}

\sf : \implies x = \dfrac{7}{13}

 \Large \underline{\boxed{\bf{x = \dfrac{7}{13}}}}

Now, solving equation (2) :

\sf : \implies y = \dfrac{1}{3 - \dfrac{1}{3} - \dfrac{1}{4}} + 1

\sf : \implies y = \dfrac{1}{\dfrac{3 \times 12}{12} - \dfrac{1 \times 4}{3 \times 4} - \dfrac{1 \times 3}{4 \times 3}} + 1

\sf : \implies y = \dfrac{1}{\dfrac{36}{12} - \dfrac{4}{12} - \dfrac{3}{12}} + 1

\sf : \implies y = \dfrac{1}{\dfrac{36 - 4 - 3}{12}} + 1

\sf : \implies y = \dfrac{1}{\dfrac{36 - 7}{12}} + 1

\sf : \implies y = \dfrac{1}{\dfrac{29}{12}} + 1

\sf : \implies y = \dfrac{1}{29} \times 12 + 1

\sf : \implies y = \dfrac{1}{29} \times 12 + 1

\sf : \implies y = \dfrac{12}{29} + 1

\sf : \implies y = \dfrac{12}{29} + \dfrac{29}{29}

\sf : \implies y = \dfrac{12 + 29}{29}

\sf : \implies y = \dfrac{41}{29}

 \Large \underline{\boxed{\bf{y = \dfrac{41}{29}}}}

 \underline{\sf Now, \: let's \: find \: \dfrac{x}{3} - \dfrac{y}{2}} :

By putting values of x and y :

 \sf : \implies \dfrac{\dfrac{7}{13}}{3} - \dfrac{\dfrac{41}{29}}{2}

 \sf : \implies \dfrac{7}{13} \times 3 - \dfrac{41}{29} \times 2

 \sf : \implies \dfrac{21}{13} - \dfrac{82}{29}

 \sf : \implies \dfrac{21 \times 29}{13 \times 29} - \dfrac{82 \times 13}{29 \times 13}

 \sf : \implies \dfrac{609}{377} - \dfrac{1066}{377}

 \sf : \implies \dfrac{609 - 1066}{377}

 \sf : \implies \dfrac{-457}{377}

Hence, answer is  \bf \dfrac{-457}{377}


IdyllicAurora: Splendid !!
EthicalElite: Thanks ^_^
Answered by Pharas
4

Answer:

congratulations on your 1000 thanks

and thanks for thanking me back

Similar questions