Math, asked by sukhmanbrar3, 10 months ago


(x +  \frac{2}{5} y)^{3}   - (x +  \frac{2}{5} y)^{3}
simplify the above equation....​

Answers

Answered by Anonymous
4

Answer:

 = {(x +  \frac{2}{5} y})^{3}  -  {(x +  \frac{2}{5} y})^{3} \\ \\  =   {x}^{3}  +  \frac{8}{125} {y}^{3}   +  \frac{6}{5}  {x}^{2} y +  \frac{12}{25} x {y}^{2}  - ( {x}^{3}  +  \frac{8}{125} {y}^{3}   +  \frac{6}{5}  {x}^{2} y +  \frac{12}{25} x {y}^{2}) \\  \\  =  {x}^{3}  +  \frac{8}{125} {y}^{3}   +  \frac{6}{5}  {x}^{2} y +  \frac{12}{25} x {y}^{2} -  {x}^{3}   -  \frac{8}{125} {y}^{3}    - \frac{6}{5}  {x}^{2} y  -   \frac{12}{25} x {y}^{2} \:  \\  \\  = 0

HOPE THIS ANSWER WILL HELP YOU........

Mark as brainliest......

# jasleenlehri13........☺✌

Answered by arsh122100
1

Answer:

In △ABC AB=AC

⇒∠B=∠C (Angles opposite to equal sides are equal)

Now using angle sum property

∠A+∠B+∠C=180

⇒80

+∠C+∠C=180

⇒2∠C=180

−80

⇒∠C=

2

100

=50

now ∠C+∠x=180

(Angles made on straight line (AC) are supplementary)

⇒50

+∠x=180

⇒∠x=180

−50

=130

Similar questions