Math, asked by wolfi, 9 hours ago


x =  \frac{5 -  \sqrt{21} }{2}  \: \: find \: {x}^{2}  +  \frac{1}{ {x}^{2} }
please show method​

Answers

Answered by sadnesslosthim
105

Given to us :

\sf \bullet \;\; x = \dfrac{5 - \sqrt{21}}{2}

Need to find :

\sf \bullet \;\; x^{2} + \dfrac{1}{x^{2}}

Solution :-

\sf\twoheadrightarrow  \;\;  x = \bigg( \dfrac{5 - \sqrt{21}}{2} \bigg)

\sf\twoheadrightarrow  \;\; \dfrac{1}{ x} = \bigg( \dfrac{2}{5 - \sqrt{21}} \bigg)

~By rationalizing the denominator

\sf\twoheadrightarrow  \;\; \dfrac{1}{ x} = \bigg( \dfrac{2}{5 - \sqrt{21}} \bigg) \times \dfrac{5 + \sqrt{21}}{5 + \sqrt{21}}

\sf\twoheadrightarrow  \;\; \dfrac{1}{ x} = \bigg( \dfrac{2( 5 + \sqrt{21})}{(5 - \sqrt{21})(5 + \sqrt{21})} \bigg)

\sf\twoheadrightarrow  \;\; \dfrac{1}{ x} = \bigg( \dfrac{2( 5 + \sqrt{21})}{(5)^{2} - (\sqrt{21})^{2}} \bigg)

\sf\twoheadrightarrow  \;\; \dfrac{1}{ x} = \bigg( \dfrac{2( 5 + \sqrt{21})}{25 - 21 } \bigg)

\sf\twoheadrightarrow  \;\; \dfrac{1}{ x} = \bigg( \dfrac{2( 5 + \sqrt{21})}{4 } \bigg)

\sf\twoheadrightarrow  \;\; \dfrac{1}{ x} = \bigg( \dfrac{5 + \sqrt{21}}{2} \bigg)

\sf\twoheadrightarrow  \;\; x +  \dfrac{1}{ x} = \bigg( \dfrac{5 + \sqrt{21}}{2} \bigg) + \bigg( \dfrac{5 - \sqrt{21}}{2} \bigg)

\sf\twoheadrightarrow  \;\; x +  \dfrac{1}{ x} = \bigg( \dfrac{5 + \sqrt{21} + 5 - \sqrt{21}}{2} \bigg)

\sf\twoheadrightarrow  \;\; x +  \dfrac{1}{ x} = \bigg( \dfrac{5 + 5}{2} \bigg)

\sf\twoheadrightarrow  \;\; x +  \dfrac{1}{ x} = \bigg( \dfrac{10}{2} \bigg)

\sf\twoheadrightarrow  \;\; x +  \dfrac{1}{ x} = 5

~Squaring on both the sides of this equation.

\sf\twoheadrightarrow  \;\; \bigg( x +  \dfrac{1}{ x} \bigg)^{2} = 5^{2}

\sf\twoheadrightarrow  \;\; x^{2} + \bigg( 2 \times x \times \dfrac{1}{x} \bigg) +  \dfrac{1}{x^{2}} = 5^{2}

\sf\twoheadrightarrow  \;\; x^{2} + \bigg( \dfrac{2x}{x} \bigg) +  \dfrac{1}{x^{2}} = 5^{2}

\sf\twoheadrightarrow  \;\; x^{2} +2+  \dfrac{1}{x^{2}} = 5^{2}

\sf\twoheadrightarrow  \;\; x^{2} +  \dfrac{1}{x^{2}} = 5^{2} - 2

\sf\twoheadrightarrow  \;\; x^{2} +  \dfrac{1}{x^{2}} = 25 - 2

\boxed{\bf{ x^{2} + \dfrac{1}{x^{2}} = 23 }} \;\; \bigstar

    _________

  • Henceforth, the value is 23.

Similar questions