Math, asked by skr076515, 3 months ago


x =  \frac{a}{b}  +  \frac{b}{a}
and
y =  \frac{a}{b}  -  \frac{b}{a}
if show

x {}^{4}  + y {}^{4}  - 2x {}^{2} y {}^{2}  = 16



Answers

Answered by casimf
0

Answer:

R=a+

)8(

-b

Step-by-step explanation:

Answered by Anonymous
8

Given :

  • \bf{x = \dfrac{a}{b} + \dfrac{b}{a}} \\ \\

  • \bf{y = \dfrac{a}{b} - \dfrac{b}{a}} \\ \\

To find :

To proof :-

\bf{x^{4} + y^{4} - 2x^{2}y^{2} = 16}

Solution :

:\implies \bf{x^{4} + y^{4} - 2x^{2}y^{2} = 16} \\ \\ \\

By using the identity , we get :

\bf{(a - b)^{2} = a^{2} - 2ab - b^{2}} \\ \\

:\implies \bf{(x^{2} + y^{2})^{2} = 16} \\ \\ \\

By Substituting the value of x and y in the equation , we get : \\ \\ \\

:\implies \bf{\bigg[\bigg(\dfrac{a}{b} + \dfrac{b}{a}\bigg)^{2} + \bigg(\dfrac{a}{b} - \dfrac{b}{a}\bigg)^{2}\bigg]^{2} = 16} \\ \\ \\

Let \bf{\dfrac{a}{b}} be \bf{p} , so \bf{\dfrac{b}{a}} will be \bf{\dfrac{1}{p}} \\ \\

By Substituting them in the equation , we get : \\ \\ \\

:\implies \bf{\bigg[\bigg(p + \dfrac{1}{p}\bigg)^{2} + \bigg(p - \dfrac{1}{p}\bigg)^{2}\bigg]^{2} = 16} \\ \\ \\

By using the identity , we get :

  • \bf{(a + b)^{2} = a^{2} + 2ab - b^{2}} \\ \\

  • \bf{(a - b)^{2} = a^{2} - 2ab - b^{2}} \\ \\

:\implies \bf{\bigg[\bigg(p^{2} + 2 \times p \times \dfrac{1}{p} + \dfrac{1}{p^{2}}\bigg) + \bigg(p^{2} - 2 \times p \times \dfrac{1}{p} + \dfrac{1}{p^{2}}\bigg)\bigg]^{2} = 16} \\ \\ \\

:\implies \bf{\bigg[\bigg(p^{2} + 2 \times \not{p} \times \dfrac{1}{\not{p}} + \dfrac{1}{p^{2}}\bigg) + \bigg(p^{2} - 2 \times \not{p} \times \dfrac{1}{\not{p}} + \dfrac{1}{p^{2}}\bigg)\bigg]^{2} = 16} \\ \\ \\

:\implies \bf{\bigg[\bigg(p^{2} + 2 + \dfrac{1}{p^{2}}\bigg) + \bigg(p^{2} - 2 + \dfrac{1}{p^{2}}\bigg)\bigg]^{2} = 16} \\ \\ \\

:\implies \bf{\bigg(p^{2} + 2 + \dfrac{1}{p^{2}} - p^{2} + 2 - \dfrac{1}{p^{2}}\bigg)^{2} = 16} \\ \\ \\

:\implies \bf{\bigg(\not{p^{2}} + 2 + \dfrac{1}{\not{p^{2}}} - \not{p^{2}} + 2 - \dfrac{1}{\not{p^{2}}}\bigg)^{2} = 16} \\ \\ \\

:\implies \bf{(2 + 2)^{2} = 16} \\ \\ \\

:\implies \bf{4^{2} = 16} \\ \\ \\

:\implies \bf{16 = 16} \\ \\ \\

\boxed{\therefore \bf{16 = 16}} \\ \\ \\

Hence , LHS is equal to the RHS.

Thus it is proved that :

\boxed{\bf{x^{4} + y^{4} - 2x^{2}y^{2} = 16}}

Proved !

Similar questions