Math, asked by rishabhrsh51, 2 months ago


x =  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  } and   \: y =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5 -  \sqrt{3} } } find \: the \: value \: of \: 3 {x}^{2}  + 3xy +  {y}^{2}

Answers

Answered by BrainlyHoney
2

 \bf  \red x = \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} + \sqrt{3} }  \: and  \: \red  y = \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5 - \sqrt{3} } }  \: find \: the \: value \: of \pink{ 3 {x}^{2} + 3xy + {y}^{2} }

For x

=  \frac{  \sqrt{5}  -  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }  \times  \frac{ \sqrt{5}  -  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  \\  \\  =  \frac{( \sqrt{5}-  \sqrt{3}) ^{2} }{( \sqrt{5} ) ^{2} - ( \sqrt{3}) ^{2}   }  \\  \\  =  \frac{ {( \sqrt{5}) }^{2}  +  {( \sqrt{3} )}^{2}  - 2. \sqrt{5} . \sqrt{3}  }{5 - 3}  \\  \\   =  \frac{5  + 3 - 2 \sqrt{15} }{2}  \\  \\  =  \frac{8 - 2 \sqrt{15} }{2}    \\  \\  =  \frac{ \cancel2(4 -  \sqrt{15} )}{ \cancel2}  \\  \\  \bf \red x \: = \boxed{ 4 -  \sqrt{15}}

Now Again,

For y

 =  \frac{  \sqrt{5}   +   \sqrt{3}  }{ \sqrt{5}   -   \sqrt{3} }  \times  \frac{ \sqrt{5}   +  \sqrt{3}  }{ \sqrt{5}   +   \sqrt{3} }  \\  \\  =  \frac{( \sqrt{5} +  \sqrt{3}) ^{2} }{( \sqrt{5} ) ^{2}  -  ( \sqrt{3}) ^{2}   }  \\  \\  =  \frac{ {( \sqrt{5}) }^{2}  +  {( \sqrt{3} )}^{2}  + 2. \sqrt{5} . \sqrt{3}  }{5 - 3}  \\  \\   =  \frac{5  + 3 + 2 \sqrt{15} }{2}  \\  \\  =  \frac{8 + 2 \sqrt{15} }{2}    \\  \\  =  \frac{ \cancel2(4 + \sqrt{15} )}{ \cancel2}  \\  \\  \bf \red y \: = \boxed{ 4 +  \sqrt{15}}

Now According to question -

Putting the values of x = 4 - √15 & y = 4 + √15

⟹ 3x² + 3xy + y²

\implies \: 3(4 -  \sqrt{15} )^{2}   + 3(4 - \sqrt{15} )(4 +  \sqrt{15} ) + (4 +  \sqrt{15})^{2}   \\  \\  \implies \: 3( {4}^{2}  + { \sqrt{15} }^{2}  - 2.4. \sqrt{15})  + 3( {4}^{2}   -  { \sqrt{15} }^{2} )  +  ({4}^{2}  + { \sqrt{15}}^{2}  + 2.4. \sqrt{15} ) \\  \\  \implies \: 3(16 + 15 - 8 \sqrt{15} ) + 3(16  - 15) + 16 + 15 + 8 \sqrt{15}  \\  \\  \implies 48 +  \cancel{45} - 24 \sqrt{15} + 48  \cancel{- 45} + 16 + 15 + 8 \sqrt{15}   \\  \\  \implies \: 127 - 16 \sqrt{15}

━━━━━━━━━━━━━━━━━━━━━━━

Note :- Scroll from left to right to view full answer.

Hope this helps you :)

Good night !!

Answered by vipinkumar212003
2

Step-by-step explanation:

 x=  \frac{  \sqrt{5}  -  \sqrt{3}  }{ \sqrt{5}   +  \sqrt{3} } \:  \: ,  \: \: y= \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  \\ x=  \frac{  \sqrt{5}  -  \sqrt{3}  }{ \sqrt{5}   +  \sqrt{3} } \times   \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} } \:  \: ,  \: \: y= \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  } \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  \\ x =   \frac{ {( \sqrt{5} -  \sqrt{3})  }^{2} }{  {( \sqrt{5} )}^{2}  -  {( \sqrt{3} )}^{2}  }  \:  \: , \:  \:  y =  \frac{ {( \sqrt{5} +  \sqrt{3}  )}^{2} }{ {( \sqrt{5} )}^{2}  -  {( \sqrt{3} )}^{2} }  \\ x =  \frac{5 - 2 \sqrt{15}  + 3}{5 - 3}  \:  \: , \:  \: y =  \frac{5 + 2 \sqrt{15}  + 3}{5 - 3}  \\ x =  \frac{8 - 2 \sqrt{15} }{2}  \:  \: , \:  \: y =  \frac{8 + 2 \sqrt{15} }{2}  \\ x =  \frac{2(4 -  \sqrt{15} )}{2}  \:  \: , \:  \: y =  \frac{2(4 +  \sqrt{15} )}{2}  \\ x = 4 -  \sqrt{15}  \:  \: , \:  \: y = 4 +  \sqrt{15}  \\   \blue{ \underline{put \: the \: values \: in \: e {q}^{n}  \: 3 {x}^{2} + 3xy +  {y}^{2}  } : } \\ =  3 {(4 -  \sqrt{15} )}^{2}  + 3(4 -  \sqrt{15} )(4 +  \sqrt{15} ) +  {(4 +  \sqrt{15}) }^{2}  \\  = 3(16 - 8 \sqrt{15}  + 15) + 3(16 - 15) + 16 + 8 \sqrt{15}  + 15 \\  = 3(31 - 8 \sqrt{15} ) + 3 \times 1 + 31 +  8\sqrt{15}  \\  = 93 - 24 \sqrt{15}  + 34 +8 \sqrt{15}  \\  = 127 - 16 \sqrt{15}  \\ \\  \red{\mathfrak{\underline{\large{Hope \: It \: Helps \: You }}}} \\ \green{\mathfrak{\underline{\large{Mark \: Me \: Brainliest}}}}

Similar questions