Math, asked by Aniketaslaliya, 1 day ago

x\sqrt{y+1} + y\sqrt{x+1} =0
then find the value of dy/dx=----

Answers

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Given function is

\rm \: y \sqrt{1 + x}  +  x \sqrt{1 + y}  = 0 \\

\rm \: y \sqrt{1 + x} =  - x \sqrt{1 + y} \\

On squaring both sides, we get

\rm \:  {y}^{2}(1 + x) =  {x}^{2}(1 + y) \\

\rm \:  {y}^{2} +  {xy}^{2} =  {x}^{2} +  {yx}^{2}  \\

\rm \:  {y}^{2} - {x}^{2} =  {yx}^{2} - {xy}^{2}  \\

\rm \: (y + x)(y - x) = xy(x - y)  \\

\rm \: (y + x)(y - x) =  - xy(y - x)  \\

\rm \: y + x =  - xy \\

\rm \: y + xy =  - x \\

\rm \: y(1 + x) =  - x \\

\rm \: y \:  =   \: -   \: \frac{x}{x + 1}  \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx} y \:  =   \: -   \: \dfrac{d}{dx}\bigg(\dfrac{x}{x + 1}\bigg) \\

\rm \: \dfrac{dy}{dx} =  - \:  \dfrac{(x + 1)\dfrac{d}{dx}x - x\dfrac{d}{dx}(x + 1)}{ {(x + 1)}^{2} }  \\

\rm \: \dfrac{dy}{dx} =  - \:  \dfrac{(x + 1) \times 1 - x(1 + 0)}{ {(x + 1)}^{2} }  \\

\rm \: \dfrac{dy}{dx} =  - \:  \dfrac{x + 1 - x}{ {(x + 1)}^{2} }  \\

\rm \: \dfrac{dy}{dx} =  - \:  \dfrac{1}{ {(x + 1)}^{2} }  \\

Hence,

\rm\implies \: \boxed{ \rm{ \:\dfrac{dy}{dx} =  - \:  \dfrac{1}{ {(x + 1)}^{2} } \:  \: }}  \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\dfrac{d}{dx} \frac{u}{v}  \:  =  \:  \frac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} }  \:  \: }} \\

\boxed{ \rm{ \:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}  \: }} \\

\boxed{ \rm{ \:\dfrac{d}{dx}k=  0  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions