Math, asked by sayan72, 1 year ago


 {x}^{x {}^{3  \div 2} } =  {x}^{(3 \div 2)x}
what is the value of x

Answers

Answered by rajeev378
6
Hello Friend

Here is your answer

 {x}^{ {x}^{3 \div 2} }  =  {x}^{(3 \div 2)x}  \\  \\ as \: same \: base \: so \: power \: is \: same \\  \\  {x}^{ \frac{3}{2} }  =  \frac{3}{2} x \\  \\ ( \sqrt{x} ) {}^{3}  =  \frac{3}{2} x \\  \\   \sqrt{x}  \times  \sqrt{x}  \times  \sqrt{x}  =  \frac{3}{2} x \\  \\ x \sqrt{x}  =  \frac{3}{2} x \\  \\  \sqrt{x}  =  \frac{3}{2}  \\  \\ on \: squaring \: both \: sides \: we \: get \\  \\ ( \sqrt{x} ) {}^{2}  = ( \frac{3}{2} ) {}^{2}  \\  \\ x =  \frac{9}{4}

Hope it helps you
Answered by MonarkSinghD
3
Answer is

 {x}^{ {x}^{3 \div 2} } = {x}^{(3 \div 2)x} \\ \\ as \: same \: base \: so \: power \: is \: same \\ \\ {x}^{ \frac{3}{2} } = \frac{3}{2} x \\ \\ ( \sqrt{x} ) {}^{3} = \frac{3}{2} x \\ \\ x \sqrt{x} = \frac{3}{2} x \\ \\ \sqrt{x} = \frac{3}{2} \\ \\ ( \sqrt{x} ) {}^{2} = ( \frac{3}{2} ) {}^{2} \\ \\ x = \frac{9}{4}

Hope it helps you

@ MSD
Similar questions