Math, asked by kkriti142, 2 months ago


x + y = 2a {}^{2}  \\ x(a - b +  \frac{ab}{a - b}) = y(a + b -  \frac{ab}{a + b})

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:x + y =  {2a}^{2}  -  -  - (1)

and

\rm :\longmapsto\:x\bigg(a - b + \dfrac{ab}{a - b} \bigg) = y\bigg(a + b  -  \dfrac{ab}{a + b} \bigg)

can be rewritten as

\rm :\longmapsto\:x\bigg(\dfrac{ {(a - b)}^{2}  + ab}{a - b} \bigg) = y\bigg(\dfrac{ {(a + b)}^{2}  - ab}{a + b} \bigg)

\rm :\longmapsto\:x\bigg(\dfrac{ {a}^{2}+{b}^{2}-2ab + ab}{a - b} \bigg) = y\bigg(\dfrac{ {a}^{2}+{b}^{2}+ 2ab-ab}{a + b} \bigg)

\rm :\longmapsto\:x\bigg(\dfrac{ {a}^{2}+{b}^{2}-ab}{a - b} \bigg) = y\bigg(\dfrac{ {a}^{2}+{b}^{2}+ab}{a + b} \bigg)

\rm :\longmapsto\:x(a + b)( {a}^{2} +  {b}^{2} - ab) = y(a - b)( {a}^{2} +  {b}^{2} + ab)

\rm :\longmapsto\:x( {a}^{3} +  {b}^{3}) = y( {a}^{3} -  {b}^{3})

\red{\bigg \{ \because \tt \:  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} +  {y}^{2} - xy  \bigg \}}

\red{\bigg \{ \because \tt \:  {x}^{3}  -   {y}^{3} = (x  -  y)( {x}^{2} +  {y}^{2}  +  xy  \bigg \}}

\rm :\longmapsto\:x( {a}^{3} +  {b}^{3})   + y( {b}^{3} -  {a}^{3}) = 0 -  -  - (2)

Now, we have 2 equation in simplified form as

\rm :\longmapsto\:x + y =  {2a}^{2}  -  -  - (1)

and

\rm :\longmapsto\:x( {a}^{3} +  {b}^{3})   + y( {b}^{3} -  {a}^{3}) = 0 -  -  - (2)

Now, using cross multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  1 & \sf   {2a}^{2}  & \sf 1 & \sf  1\\ \\ \sf  {b}^{3}  -  {a}^{3}  & \sf 0 & \sf  {a}^{3} +  {b}^{3}   & \sf  {b}^{3} -  {a}^{3}  \\ \end{array}} \\ \end{gathered}

So, now

\rm :\longmapsto\:\dfrac{x}{0 -  {2a}^{2}( {b}^{3} -  {a}^{3})}  = \dfrac{y}{ {2a}^{2} ( {a}^{3}  +  {b}^{3}) - 0}  = \dfrac{ - 1}{ {b}^{3}-{a}^{3} -{a}^{3}-{b}^{3}}

\rm :\longmapsto\:\dfrac{x}{{2a}^{2}( {a}^{3} -  {b}^{3})}  = \dfrac{y}{ {2a}^{2} ( {a}^{3}  +  {b}^{3} )}  = \dfrac{ - 1}{-2{a}^{3}}

\rm :\longmapsto\:\dfrac{x}{{2a}^{2}( {a}^{3} -  {b}^{3})}  = \dfrac{y}{ {2a}^{2} ( {a}^{3}  +  {b}^{3} )}  = \dfrac{ 1}{2{a}^{3}}

Taking first and third member, we have

\rm :\longmapsto\:\dfrac{x}{{2a}^{2}( {a}^{3} -  {b}^{3})} = \dfrac{ 1}{2{a}^{3}}

\bf\implies \:x = \dfrac{ {a}^{3}  -  {b}^{3} }{a}

Taking second and third member, we have .

\rm :\longmapsto\:\dfrac{y}{ {2a}^{2} ( {a}^{3}  +  {b}^{3} )}  = \dfrac{ 1}{2{a}^{3}}

\bf\implies \:y = \dfrac{ {a}^{3} + {b}^{3} }{a}

 \green{\boxed{ \bf{ \: Verification}}}

Consider, equation (1),

\rm :\longmapsto\:x + y =  {2a}^{2}

On substituting the values of x and y, we have

\rm :\longmapsto\:\dfrac{ {a}^{3}  -  {b}^{3} }{a} + \dfrac{ {a}^{3} + {b}^{3} }{a} =  {2a}^{2}

\rm :\longmapsto\:\dfrac{ {a}^{3}  -  {b}^{3}  +  {a}^{3}  +  {b}^{3} }{a}  =  {2a}^{2}

\rm :\longmapsto\:\dfrac{ {a}^{3}+  {a}^{3}   }{a}  =  {2a}^{2}

\rm :\longmapsto\:\dfrac{2 {a}^{3}}{a}  =  {2a}^{2}

\bf\implies \: {2a}^{2}  =  {2a}^{2}

Hence, Verified

Similar questions