Math, asked by vishnu7948, 10 months ago


x4 + 1x4 = 57 \\  \\ find \: x + 1 \div x =

Answers

Answered by manju215
0

you can do it by pithagaurousthoram

Answered by Anonymous
3

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{ solution}}}}

</u></strong><strong><u>\</u></strong><strong><u>b</u></strong><strong><u>f</u></strong><strong><u>\</u></strong><strong><u>h</u></strong><strong><u>u</u></strong><strong><u>g</u></strong><strong><u>e</u></strong><strong><u> </u></strong><strong><u>\</u></strong><strong><u>s</u></strong><strong><u>t</u></strong><strong><u>a</u></strong><strong><u>r</u></strong><strong><u> GIVEN:=

\bf\implies (x{}^{4}+\frac{1}{x{}^{4}})=47

</u></strong><strong><u>\</u></strong><strong><u>b</u></strong><strong><u>f</u></strong><strong><u>\huge \star TO finD

</u></strong><strong><u>\</u></strong><strong><u>b</u></strong><strong><u>f</u></strong><strong><u>\</u></strong><strong><u>i</u></strong><strong><u>m</u></strong><strong><u>p</u></strong><strong><u>l</u></strong><strong><u>i</u></strong><strong><u>e</u></strong><strong><u>s</u></strong><strong><u> </u></strong><strong><u>(</u></strong><strong><u>x</u></strong><strong><u>+</u></strong><strong><u>\</u></strong><strong><u>f</u></strong><strong><u>r</u></strong><strong><u>a</u></strong><strong><u>c</u></strong><strong><u>{</u></strong><strong><u>1</u></strong><strong><u>}</u></strong><strong><u>{</u></strong><strong><u>x</u></strong><strong><u>}</u></strong><strong><u>)</u></strong><strong><u>=</u></strong><strong><u>?</u></strong><strong><u>

</u></strong><strong><u>\</u></strong><strong><u>b</u></strong><strong><u>f</u></strong><strong><u>\huge \star Solution:-

\bf\implies (x{}^{4}+\frac{1}{x{}^{4}})=47\\ \implies [(x{}^{2}){}^{2}+(\frac{1}{x{}^{2}}){}^{2}]=47 \\ \implies [x{}^{2}+\frac{1}{x{}^{2}}]{}^{2}-2\times \cancel{x{}^{2}}\times \frac{1}{\cancel{x{}^{2}}}=47\\ \implies [(x+\frac{1}{x}){}^{2}-2\times \cancel {x}\times\frac{1}{\cancel{x}}]{}^{2}-2=47\\ \implies [(x+\frac{1}{x}){}^{2}-2]{}^{2}=47+2\\</p><p>\implies [(x+\frac{1}{x}){}^{2}-2]=\sqrt{49}\\ \implies [(x+\frac{1}{x}){}^{2}-2]=7\\</p><p>\implies (x+\frac{1}{x}){}^{2}=7+2\\</p><p>\implies (x+\frac{1}{x})=\sqrt{9}\\</p><p>\implies \boxed{\bf\red{x+\frac{1}{x}=3}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\huge \star UseD ForMuLaS:-

\rightarrow\bf\green{ A{}^{2}+B{}^{2}=(A+B){}^{2}-2A.B}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \&amp;#35;\mathcal{answer with quality  }\:  \:  \&amp;#38;  \:  \: \&amp;#35;BAL }

Similar questions