Math, asked by rudra9t2king, 1 month ago


 {y}^{2}+{x}^{2} \frac{ dy}{dx} = xy \frac{dy}{dx}

Attachments:

Answers

Answered by GraceS
33

\sf\huge\bold\pink{Answer:}

 {y}^{2}  +  {x}^{2}  \frac{dy}{dx}  = xy\frac{dy}{dx}  \\  {y}^{2}  + 2x =x\frac{dy}{dx}.\frac{dy}{dx}+\frac{dy}{dx}\\ {y}^{2}  + 2x =\frac{{d}^{2}y}{d{x}^{2}}+x\frac{dy}{dx}

Answered by shadowsabers03
8

Given,

\small\text{$\longrightarrow y^2+x^2\,\dfrac{dy}{dx}=xy\,\dfrac{dy}{dx}$}

Dividing each term by x^2,

\small\text{$\longrightarrow\dfrac{y^2}{x^2}+\dfrac{dy}{dx}=\dfrac{y}{x}\cdot\dfrac{dy}{dx}$}

\small\text{$\longrightarrow\left(\dfrac{y}{x}\right)^2=\dfrac{y}{x}\cdot\dfrac{dy}{dx}-\dfrac{dy}{dx}$}

\small\text{$\longrightarrow\left(\dfrac{y}{x}\right)^2=\left(\dfrac{y}{x}-1\right)\dfrac{dy}{dx}\quad\quad\dots(1)$}

Substitute,

\small\text{$\longrightarrow u=\dfrac{y}{x}$}

\small\text{$\longrightarrow y=ux$}

\small\text{$\longrightarrow\dfrac{dy}{dx}=u+x\,\dfrac{du}{dx}$}

Then (1) becomes,

\small\text{$\longrightarrow u^2=\left(u-1\right)\left(u+x\,\dfrac{du}{dx}\right)$}

\small\text{$\longrightarrow x\,\dfrac{du}{dx}=\dfrac{u^2}{u-1}-u$}

\small\text{$\longrightarrow x\,\dfrac{du}{dx}=\dfrac{u}{u-1}$}

\small\text{$\longrightarrow\dfrac{dx}{x}=\dfrac{u-1}{u}\,du$}

Integrating,

\small\text{$\displaystyle\longrightarrow\int\dfrac{dx}{x}=\int\left(1-\dfrac{1}{u}\right)\,du$}

\small\text{$\longrightarrow\ln|x|=u-\ln|u|+\ln|C|$}

Undoing substitution u=\dfrac{y}{x},

\small\text{$\longrightarrow\ln|x|=\dfrac{y}{x}-\ln\left|\dfrac{y}{x}\right|+\ln|C|$}

\small\text{$\longrightarrow\ln|y|=\dfrac{y}{x}+\ln|C|$}

\small\text{$\longrightarrow\underline{\underline{y=Ce^{\frac{y}{x}}}}$}

Similar questions