Math, asked by jaybhangale59, 4 days ago


y  =  { \sin}^{ - 1}  (  {x}^{3} )
diff wrt x​

Answers

Answered by anindyaadhikari13
10

\textsf{\large{\underline{Solution}:}}

Given:

 \rm \longrightarrow y =  \sin^{ - 1} ( {x}^{3} )

 \rm \longrightarrow y^{ \prime}  =  \dfrac{d}{dx}\sin^{ - 1} ( p )  \times  \dfrac{d}{dx} (p ) \:  \:  \:  \:  \bigg(p =  {x}^{3}  \bigg)

 \rm \longrightarrow y^{ \prime}  =  \dfrac{1}{ \sqrt{1 -  {p}^{2} } }  \times  \dfrac{d}{dx} ( {x}^{3} )

 \rm \longrightarrow y^{ \prime}  =  \dfrac{1}{ \sqrt{1 -  {p}^{2} } }  \times 3 {x}^{2}

 \rm \longrightarrow y^{ \prime}  =  \dfrac{1}{ \sqrt{1 -  {x}^{6} } }  \times 3 {x}^{2}

 \rm \longrightarrow y^{ \prime}  =  \dfrac{3 {x}^{2} }{ \sqrt{1 -  {x}^{6} } }

★ Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

\begin{gathered}\boxed{\begin{array}{c|c}\bf f(x)&\bf\dfrac{d}{dx}f(x)\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf0\\ \\ \sf sin(x)&\sf cos(x)\\ \\ \sf cos(x)&\sf-sin(x)\\ \\ \sf tan(x)&\sf{sec}^{2}(x)\\ \\ \sf cot(x)&\sf-{cosec}^{2}(x)\\ \\ \sf sec(x)&\sf sec(x)tan(x)\\ \\ \sf cosec(x)&\sf-cosec(x)cot(x)\\ \\ \sf\sqrt{x}&\sf\dfrac{1}{2\sqrt{x}}\\ \\ \sf log(x)&\sf\dfrac{1}{x}\\ \\ \sf{e}^{x}&\sf{e}^{x}\end{array}}\\ \end{gathered}

Similar questions