Math, asked by yedlebalkrishna2004, 2 months ago


y =  \sqrt{x}  -  \frac{1}{2 \sqrt{x} } +  cosx
find
 \frac{dy }{dx}  =

Answers

Answered by Anonymous
5

Question:

 \tt y = \sqrt{x} - \frac{1}{2 \sqrt{x} } + cosx \: \: find ~dy/dx

Solution:

 \tt y = \sqrt{x} - \frac{1}{2 \sqrt{x} } + cosx \\\\ \to \tt \frac{dy} {dx} = d\frac{\bigg(\sqrt{x} - \frac{1}{2 \sqrt{x} } + cosx \bigg)}{dx} \\\\\to \tt d\frac{\sqrt{x}}{dx} - d \frac{ \frac{1}{2 \sqrt{x} }} {dx} + d \frac{cosx} {dx} \\\\\to \tt d \frac{x^{ \frac{1}{2}} }{dx} - \frac{1}{2}. \frac{d} {dx} \bigg[\frac{1}{\sqrt{x}} \bigg] +d \frac{cosx} {dx} \\\\\to \tt \frac{1}{2}x^{\frac{-1}{2}}- \frac{\big( - \frac{1}{2}x^ { -  \frac{1}{2}-1} \big)} {2} - sinx \\\\ \to\tt \frac{1}{2 \sqrt{x}} + \frac{1}{4x^{\frac{3} {2}}} - sinx

Similar questions