Math, asked by Anonymous, 10 months ago


y =  {tan}^{ - 1} ( \frac{sinx}{1 + cosx} ) \\  \\  \:  \: find \:  \frac{dy}{dx}

Answers

Answered by kaushik05
100

  \huge \red{\mathfrak{solution}}

Given:

y =  {tan}^{ - 1} ( \frac{sinx}{1 + cosx} ) \\  \\

To find :

 \frac{dy}{dx}  \\

First solve Y

 \rightarrow \:  {tan}^{ - 1}  (\frac{sinx}{1 + cosx} ) \\  \\

As we know that :

 \boxed{ \bold{ \green{ \star \: sinx = 2sin \frac{x}{2} cos \frac{x}{2} }}} \\  \\   \boxed{ \bold{ \green{\star \:1 +  cosx = 2 {cos}^{2}  \frac{x}{2} }}}

 \rightarrow \:  {tan}^{ - 1} ( \frac{2sin \frac{x}{2} cos \frac{x}{2} }{2 {cos}^{2} \frac{x}{2}  } ) \\  \\  \rightarrow {tan}^{ - 1} (tan \frac{x}{2} ) \\  \\  \rightarrow \:  \frac{x}{2}

Now differentiate w.r.t X

 \implies \:  \frac{d}{dx} ( \frac{x}{2} ) \\  \\  \implies \frac{1}{2}

Hence, the answer is

  \huge \boxed{ \bold{ \red {\frac{1}{2} }}}

Answered by RvChaudharY50
190

Question :---

  • if y = Tan^(-1) [ sinx/(1+cosx) ] Find dy/dx ?

Formula used :---

  • sinx = 2sinx/2 * cosx/2
  • 1+cosx = 2cos²(x/2)
  • sinx/cosx = tan x
  • Tan^(-1) * TanA = A
  • dy/dx of x = 1 .

Solution :--

sinx/(1+cosx) can be solved by Putting above told values ,

2sinx/2 * cosx/2 / (2cos²(x/2))

( 2 cosx will cancel )

sin(x/2) / cos(x/2)

→ Tan(x/2)

putting the value in Question now,

y = Tan^(-1)(Tan(x/2)

→ y = x/2

So,

dy/dx = 1/2 [ d/dx (x) ]

dy/dx = 1/2 * 1

→ dy/dx = 1/2 (Ans)

______________________________

Similar questions