Math, asked by MiraculousBabe, 3 months ago

y=x^2-2x-15 \\ y=2x+6

Which of the following could be the y-coordinate of a point of intersection of the graphs of the two equations above in the xy-plane?

A) -3
B) 5
C) 7
D) 20​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

The given equations are

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \bf  \: y \:  =  {x}^{2}  - 2x - 15 -  -  -  - (1)

and

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: y \:  = 2x + 6 -  -  - (2)

For the point of intersection of equation (1) and (2),

we have to equate the equations.

So,

\rm :\longmapsto\: {x}^{2}  - 2x - 15 = 2x + 6

\rm :\longmapsto\: {x}^{2}  - 4x - 21 = 0

\rm :\longmapsto\: {x}^{2}  - 7x + 3x - 21 = 0

\rm :\longmapsto\:x(x - 7) + 3(x - 7) = 0

\rm :\longmapsto\:(x - 7)(x + 3) = 0

\bf\implies \:x = 7 \:  \:  \:  \: or \:  \:  \:  \: x =  - 3

So, corresponding values of y is

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y = 2x + 6 \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 7 & \sf 20 \\ \\ \sf  - 3 & \sf 0 \end{array}} \\ \end{gathered}

  \:  \:  \:  \:  \: \boxed{ \bf \:Hence,  \: option  \: (D) \:  is  \: correct.}

Attachments:
Answered by Dipika7041
4

Answer:

Equation of the circle with center (0,1) & radius 3 is given as

(x−0)2+(y−1)2=32⟹x2+y2−2y−8=0

Attachments:
Similar questions