TF AB=4, AD=5 , AC=6, find Find A E=9 2 С c A D
Answers
Answer:
I don't know sorry for that sorry for that
Answer:
In a Δ ABC, D and E are points on the sides AB and AC respectively such that DE || BC.
i) If AD = 6 cm, DB = 9 cm and AE = 8 cm, Find AC.
Solution:
Given: Δ ABC, DE ∥ BC, AD = 6 cm, DB = 9 cm and AE = 8 cm.
Required to find AC.
By using Thales Theorem, [As DE ∥ BC]
AD/BD = AE/CE
Let CE = x.
So then,
6/9 = 8/x
6x = 72 cm
x = 72/6 cm
x = 12 cm
∴ AC = AE + CE = 12 + 8 = 20.
ii) If AD/DB = 3/4 and AC = 15 cm, Find AE.
Solution:
Given: AD/BD = 3/4 and AC = 15 cm [As DE ∥ BC]
Required to find AE.
By using Thales Theorem, [As DE ∥ BC]
AD/BD = AE/CE
Let, AE = x, then CE = 15-x.
⇒ 3/4 = x/ (15–x)
45 – 3x = 4x
-3x – 4x = – 45
7x = 45
x = 45/7
x = 6.43 cm
∴ AE= 6.43cm
iii) If AD/DB = 2/3 and AC = 18 cm, Find AE.
Solution:
Given: AD/BD = 2/3 and AC = 18 cm
Required to find AE.
By using Thales Theorem, [As DE ∥ BC]
AD/BD = AE/CE
Let, AE = x and CE = 18 – x
⇒ 23 = x/ (18–x)
3x = 36 – 2x
5x = 36 cm
x = 36/5 cm
x = 7.2 cm
∴ AE = 7.2 cm