Math, asked by bhagataditya2005, 1 month ago

TF AB=4, AD=5 , AC=6, find Find A E=9 2 С c A D​

Answers

Answered by archita25032004
0

Answer:

I don't know sorry for that sorry for that

Answered by happyhepsi
0

Answer:

In a Δ ABC, D and E are points on the sides AB and AC respectively such that DE || BC.

i) If AD = 6 cm, DB = 9 cm and AE = 8 cm, Find AC.

Solution:

Given: Δ ABC, DE ∥ BC, AD = 6 cm, DB = 9 cm and AE = 8 cm.

Required to find AC.

By using Thales Theorem, [As DE ∥ BC]

AD/BD = AE/CE

Let CE = x.

So then,

6/9 = 8/x

6x = 72 cm

x = 72/6 cm

x = 12 cm

∴ AC = AE + CE = 12 + 8 = 20.

ii) If AD/DB = 3/4 and AC = 15 cm, Find AE.

Solution:

Given: AD/BD = 3/4 and AC = 15 cm [As DE ∥ BC]

Required to find AE.

By using Thales Theorem, [As DE ∥ BC]

AD/BD = AE/CE

Let, AE = x, then CE = 15-x.

⇒ 3/4 = x/ (15–x)

45 – 3x = 4x

-3x – 4x = – 45

7x = 45

x = 45/7

x = 6.43 cm

∴ AE= 6.43cm

iii) If AD/DB = 2/3 and AC = 18 cm, Find AE.

Solution:

Given: AD/BD = 2/3 and AC = 18 cm

Required to find AE.

By using Thales Theorem, [As DE ∥ BC]

AD/BD = AE/CE

Let, AE = x and CE = 18 – x

⇒ 23 = x/ (18–x)

3x = 36 – 2x

5x = 36 cm

x = 36/5 cm

x = 7.2 cm

∴ AE = 7.2 cm

Similar questions