Math, asked by NagrajHL, 2 months ago

th
In an AP 10, 7,4.. -62 . Find 11th
term from last?​

Answers

Answered by MяMαgıcıαη
300

GIVEN :

  • \sf AP : 10 , 7 , 4 , ... , -62

TO FIND :

  • \sf 11^{th}\:term\: from \:last ?

SOLUTION :

\qquad:\implies\:\sf a_{n} = a + (n - 1)d

Values that we have :

  • \sf a_{n} = \bold{-62}
  • \sf a = \bold{10}
  • \sf d = 7 - 10 = \bold{-3}

Putting all values :

\qquad:\implies\:\sf -62 = 10 + (n - 1)(-3)

\qquad:\implies\:\sf -62 = 10 + (-3n + 3)

\qquad:\implies\:\sf -62 = 10 - 3n + 3

\qquad:\implies\:\sf -62 = 13 - 3n

\qquad:\implies\:\sf -62 - 13 = -3n

\qquad:\implies\:\sf -75 = -3n

\qquad:\implies\:\sf \cancel{-}75 = \cancel{-}3n

\qquad:\implies\:\sf 3n = 75

\qquad:\implies\:\sf n = \dfrac{75}{3}

\qquad:\implies\:\sf n = \dfrac{\cancel{75}}{\cancel{3}}

\qquad:\implies\:\bold {n = \red{25}}

\large\underline{\boxed{\tt{Number\:of\:terms\:=\:\rm\purple{25}}}}

ㅤㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Now,

11th term from last = (25 - 11) + 1

11th term from last = 14 + 1

11th term from last = 15

\therefore\underline{\sf {11^{th}\: term \:from \:last \:is \:15^{th}\:term\: from\: first}}

ㅤㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

So,

\qquad:\implies\:\sf a_{15} = a + (15 - 1)d

\qquad:\implies\:\sf a_{15} = 10 + (14)(-3)

\qquad:\implies\:\sf a_{15} = 10 - 42

\qquad:\implies\:\bold{a_{15} = \red{-32}}

This is the required answer.

\large\underline{\boxed{\tt{11^{th}\:term\:from\:last\:=\:\rm\purple{-32}}}}

Answered by Anonymous
67

_________________________

 \:  \:  \\  \:  \:

 \large{ \underline {\bf {\orange{Solution}}}}

 \:

 \tt \green{Formula \:  \:  used}

 \:

  \begin{gathered}{ \underline{ \boxed{ \bf{ \blue{ a_{n} = a + (n - 1)d }}}}} \end{gathered}

 \:

 \tt \green{Given  \:  \: values }

 \:

  •  \bf{ a_{n}  =  - 62}
  •  \bf{a = 10}
  •  \bf{d = 7 - 10 =  - 3}

 \:

  \qquad : \rightarrow \sf \blue{ - 62 = 10 + (n - 1)( - 3)}

 \:

 \qquad :  \rightarrow \bf \blue{ - 62 = 10 + ( - 3n + 3)}

 \:

 \qquad :  \rightarrow \bf \blue{ - 62 = 13 - 3n}

 \:

 \qquad :  \rightarrow \bf \blue{ - 62 - 13 =  - 3n}

 \:

 \qquad :  \rightarrow \bf \blue{ - 75 =  - 3n}

 \:

 \qquad :  \rightarrow \bf \blue{ \cancel - 75 =  \cancel - 3n}

 \:

 \qquad :  \rightarrow \bf \blue{3n = 75}

 \:

 \qquad :  \rightarrow \bf \blue{n =  \dfrac{75}{3} }

 \:

 \qquad : \rightarrow \bf \blue{n =  \cancel{ \dfrac{75}{3}} }

 \:

 \qquad   :  \rightarrow \bf \blue{n = 25}

 \:

 \tt \green{Number  \: of  \: terms  = 25}

 \:

Now,

 \:

 \bf{ {11}^{th}  \: term \: from \: last \:  = (25 - 11) + 1} \\  \bf{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 14 + 1} \\  \bf{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 15}

 \:

 \tt \purple{.°. \:   {11}^{th}  \: \: term \: from \: last \: is \:  {15}^{th}   \: term \: from \: first.}

 \:

 \:

 \quad \quad :  \implies \bf \orange{ a_{15}  = a + (15 - 1)d}

 \:

 \quad :  \implies \bf \orange{ a_{15} = 10 + (14) + ( - 3) }

 \:

 \qquad : \implies \bf \orange{ a_{15} = 10 - 42}

 \:

 \qquad :  \implies \bf \orange{  a_{15}  =  - 32 }

 \:

 \tt \green{Required  \:  \: a nswer }

 \:

 {\underline { \boxed{ \sf{ \pink{ {11}^{th}term  \: from \: last \:  =  - 32}}}}}

 \:  \:  \\  \:  \:

_________________________

Attachments:
Similar questions