Math, asked by ssid2729, 4 months ago

दो लगातार पूर्णांकों का गुणनफल 72 है। पूर्णांक ज्ञात करें।​

Answers

Answered by rajratangarments8400
0

Answer:

माना प्रथम पूर्णांक = x

अत: द्वितीय पूर्णांक = x+1

प्रस्नानुसर ,

x(x+1) = 72

x²+x-72 = 0

x²+9x-8x-72 = 0

x(x+9)-8(x+9) = 0

(x+9)(x-8) = 0

when x+9 = 0. when x-8 = 0

x= -9. x = 8

अतः संख्याएं

-9 and -8 or 8 and 9

please mark my answer as braintists answer

okkkk

Answered by ItzSuperBranded03
0

माना पहली पूर्णांक =( x)

दूसरी पूर्णांक= (x+1)

x \times (x + 1) = 72 \\ ➜ {x}^{2}  + x = 72 \\ ➜  {x}^{2}  + x - 72 = 0 \\ ➜ {x}^{2}  + 9x - 8x - 72 = 0 \\ ➜x(x + 9) \:  \:  - 8(x + 9) = 0 \\ ➜(x + 9) \:  \:  \: (x - 8) = 0 \\ now \\ (x + 9) = 0 \\ x =  - 9 \\ कोई \:  भी  \: सांख्य \:  धनात्मक  \: नहीं \\  हो \:  सकती।  \: इसलिए  \: यह  \: अमान्य \:  हैं। \\ (x - 8) = 0  \\ x = 8 \\ पहली पूर्णांक =( x) = 8 \\  \\ </p><p>दूसरी पूर्णांक= (x+1) \\  =  8 + 1 \\  = 9 \\  \\

{\huge\mathcal{\fcolorbox{lime}{black}{\pink{FROM☞ ADESH  \:  KUMAR}}}}

Similar questions