Physics, asked by wajahatkincsem1785, 1 year ago

Tha speed of a body which is moving with a constand acceleration
Change to 5m/s to 15m/s in 5s ,find tha displacement of tha body?

Answers

Answered by Anonymous
48

Answer:

50 m

Explanation:

Given :

Initial velocity ( u )  = 5 m / sec

Final velocity ( v )  = 15 m / sec

Time ( t ) = 5 sec

We have :

v = u + a t

Putting values here

15 = 5 + a × 5

5 a = 10

a = 2

Now we also have

v² = u² + 2 a s

Again putting values here

225 = 25 + 2 × 2 × s

4 s = 200

s = 50 m

Hence displacement of the body is 50 m

Answered by Anonymous
35

\red{\mathrm{\mathrm{\underline{Given :-}}}}

\blue{\mathrm{\mathrm{u = 5 m/s , v = 15 m/s , t = 5 s}}}

\red{\mathrm{\mathrm{Q.Calculate\: the \: displacement\: of \: the \: body ?}}}

\gray{\mathrm{\mathrm{\underline {Solution:-}}}}

\gray{\mathrm{\mathrm{By\: using \:equation\: of \:motion:-}}}

 \mathsf{v = u + at}

 \mathsf{15 = 5 + a \times 5}

 \mathsf{15 -5 = 5a }

 \mathsf{5a = 10}

 \mathsf{a =\dfrac{10}{5}}

\huge \boxed{\boxed{\boxed{a = 2 m/s^2}}}

\pink{\mathrm{\mathrm{The\: acceleration\: will\: be \:2 m/s^2}}}

\gray{\mathrm{\mathrm{Displacement\: travelled \:by \:body is\: given\: by:-}}}

 \huge \boxed{2as = v^2 -u^2}

\green{\mathrm{\mathrm{Put\: the\: given \: value:-}}}

 \mathsf{2 \times 2\times s = (15)^2 -(5)^2}

\mathsf{ 4s = 225 -25}

 \mathsf{4s = 200}

 \mathsf{s = \dfrac{200}{4}}

 \huge\boxed{\boxed{\boxed{s = 50 m}}}

\gray{\mathrm{\mathrm{Displacement\: will \: be \: 50 m}}}

Similar questions