Math, asked by bsaiuttejteja4091, 10 months ago

Tha value of sin 78°+cos132°is

Answers

Answered by Payelpati2003
40

Answer:

(√5-1)/4

Step-by-step explanation:

sin 78°+cos 132° = sin 78°+ cos(90+42)°

                    = sin 78° - sin 42°

                    =  2cos(120°/2)sin(36°/2)  [sin C-sinD =2cos(C+D)/2 sin(C-D)/2]

                    =  2cos 60° sin 18°

                    =  2×(1/2)×(√5-1)/4

                    =  (√5-1)/4

Answered by arshikhan8123
0

Concept-

Trigonometric identities are the equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality can be defined.

Given-

Expression is given as  sin 78° + cos 132°

Find-

Find the value of sin 78° + cos 132°

Solution-

sin 78° + cos 132°

Use the identity : cos(x) = sin ( 90° - x )

cos (132°) = sin (90° - 132°)

sin (78°) + sin (90° - 132°)

Simplify-

sin (78°) + sin ( -42°)

Use the following property : sin ( -x ) = - sin ( x )

sin (-42°) = - sin (42°)

sin (78°) - sin (42°)

Use the following identity : sin (s) - sin (t) = 2 cos (s + t)/2 sin (s - t)/2

sin (78°) - sin (42°) = 2 cos (78° + 42°)/2 . sin (78° - 42°)/2

2 cos (78° + 42°)/2 sin (78 °- 42°)/2

Simplify -

2 cos (60°) sin (18°)

Use the following identity -

cos (60°) = 1/2

sin (18°) = [-2 + √2² - 4 . 4 (-1) ] / 2.4

sin 18° = (-2 + √20) / 2.4

sin 18° = (-2 + 2√5) /2.4

sin 18° = (√5 - 1) / 4

⇒ 2 cos (60°) sin (18°)

⇒ 2 ( 1/2) . (√5 - 1) /4

⇒ 1 . (√5 - 1)/4

⇒ (√5 - 1 ) / 4

Therefore , the value of sin 78° + cos132° is (√5 - 1 ) / 4.

#SPJ3

Similar questions