Math, asked by komal88880, 3 months ago

than the other, find the length
Open area of a house is in the shape of a trapezium with parallel sides in the ratio 3 : 5. Its area
50 m² and the perpendicular distance between the parallel sides is 5 metres. Find the length of the
parallel sides of that open area.
.​

Answers

Answered by shreenidhishreenidhi
0

Answer:

This is the answer for you are question

Attachments:
Answered by INSIDI0US
107

Step-by-step explanation:

\frak {Given} \begin{cases} &\sf{Ratio\ of\ parallel\ sides\ of\ trapezium\ =\ 3\ :\ 5.} \\ &\sf{Area\ =\ 50m^2.} \\ &\sf{Perpendicular\ distance\ between\ the\ parallel\ sides\ =\ 5m.} \end{cases}

To find:- Length of the parallel sides of trapezium ?

☯️ Let the sides of the trapezium be 3x and 5x.

__________________

 \frak{\underline{\underline{\dag As\ we\ know\ that:-}}}

 \sf : \implies {Area\ of\ trapezium\ =\ \dfrac{1}{2}\ \times\ (Sum\ of\ parallel\ sides)\ \times\ (Distance\ between\ them).}

__________________

 \frak{\underline{\underline{\dag By\ substituting\ the\ values\ we\ get:-}}}

 \sf : \implies {50\ =\ \dfrac{1}{2}\ \times\ (3x\ +\ 5x)\ \times\ 5} \\ \\ \\ \sf : \implies {50\ =\ \dfrac{1}{\cancel 2}\ \times\ 8x\ \times\ \cancel 5} \\ \\ \\ \sf : \implies {50\ =\ 2.5\ \times\ 8x} \\ \\ \\ \sf : \implies {\cancel \dfrac{50}{2.5}\ =\ 8x} \\ \\ \\ \sf : \implies {20\ =\ 8x} \\ \\ \\ \sf : \implies {\cancel \dfrac{20}{8}\ =\ x} \\ \\ \\ \sf : \implies {2.5\ =\ x} \\ \\ \\ \sf : \implies {\pink{\underline{\boxed{\bf x\ =\ 2.5}}}}\bigstar

 \sf \therefore {\underline{Hence,\ the\ value\ of\ x\ is\ 2.5}}

__________________

 \frak{\underline{\underline{\dag Now,\ finding\ the\ parallel\ sides:-}}}

 \sf : \implies {3x\ =\ 3\ \times\ 2.5\ =\ 7.5m.}

 \sf : \implies {5x\ =\ 5\ \times\ 2.5\ =\ 12.5m.}

Hence:-

 \sf \therefore {\underline{The\ length\ of\ the\ required\ sides\ are\ 7.5m\ and\ 12.5m.}}

Similar questions