दर्शाइये-
a-b) (a+b) + (b-c) (b+ c) + (c-a) (c + a) = 0
Answers
Answered by
0
Step-by-step explanation:
a(a+b)-b(a+b)+b(b+c)-c(b+c)+c(c+a)-a(c+a)=0
a^2+ab_ab-b^2+b^2+bc-bc-c^2+c^2+ac-ac-a^2=0
0=0
Answered by
2
To prove;
(a-b) (a+b) + (b-c) (b+ c) + (c-a) (c + a) = 0
Proof;
L.H.S.
=> (a-b) (a+b) + (b-c) (b+ c) + (c-a) (c + a)
=> {(a-b)(a+b)} + {(b+c)(b-c)} + {(c-a)(c+a)}
According to algebric identities one of the identity is that :-
=> (x-y)(x+y) = x² - y²
So,
- (a-b) (a+b) = a² - b²
- (b-c)(b+c) = b² - c²
- (c-a)(c+a) = c² - a²
So, putting values ;
=> a² - b² + b² - c² + c² - a²
=> a² - a² + b² - b² + c² - c²
=> 0 [<---- L.H.S.]
R.H.S.
=> 0 [<----- R.H.S.]
Since, L.H.S. = R.H.S.
Therefore, proved that (a-b) (a+b) + (b-c) (b+ c) + (c-a) (c + a) = 0
Similar questions