that divides the two ventricles can be named as
that divides the atrium and ventricle can be named as
hat connect two chambers are called apertures. Let us try to
ect the atria and ventricles.
e that connects the right atrium and right ventricle can be nam
re that connects the left atrium and left ventricle can be name
are that closes an aperture, and allows one way movement of
let us name the valves that are present in the chambers of th
hat is present between left atrium and left ventricle can be name
at is present between right atrium and right ventricle can be nan
eins of the legs fail to stop the flow of blood what could be the
ppen if cell sap in the cells of root hair contain a high concentr
tethoscope using a paper cup and plastic tube. Write dow
ists prove that the food is transported through the phloem?(A:
Ference about experiments with aphids?(AS3)
tion about blood pressure of your school teachers or nighbor
Answers
Answer:
The heart is responsible for circulating blood throughout the body. It is about the size of your clenched fist and sits in the chest cavity between your two lungs. Its walls are made up of muscle that can squeeze or pump blood out every time the heart "beats" or contracts. Fresh, oxygen-rich air is brought into the lungs every time you take a breath. The lungs are responsible for delivering oxygen to the blood, and the heart circulates the blood through the lungs and out to the different parts of the body.
The heart is divided into four chambers or "rooms". You can compare it to a duplex apartment that is made up of a right and a left unit, separated from each other by a partition wall known as a septum (pronounced SEP-tum).
Each "duplex" is subdivided into an upper and a lower chamber. The upper chamber is known as the atrium (pronounced AY-tree-yum) while the lower chamber is referred to as the ventricle (pronounced VEN-trickle). The right atrium (RA) sits on top of the right ventricle (RV) on the right side of the heart while the left atrium (LA) sits atop the left ventricle (LV) on the left side.
The right side of the heart (RA and RV) is responsible for pumping blood to the lungs, where the blood cells pick up fresh oxygen. This oxygenated blood is then returned to the left side of the heart (LA and LV). From here the oxygenated blood is pumped out to the rest of the body supplying the fuel that the body cells need to function. The cells of the body remove oxygen from the blood, and the oxygen-poor blood is returned to the RA, where the journey began. This round trip is known as the circulation of blood.
Do you wonder why each side of the heart has two pumping chambers (atrium and ventricle)? Why not just have a ventricle to receive blood and then pump it straight out? The reason is that the atrium serves as a "booster pump" that increases the filling of the ventricle. Filling a normal ventricle to capacity translates to more vigorous contraction or emptying. You can compare this to a strong spring. Within reasonable limits, the more you stretch a spring, the more vigorously will be its contraction or recoil. More complete filling of the ventricles thus translates into more vigorous ventricular contraction (a good thing).
The figure shown above is a section of the heart, as viewed from the front. It demonstrates the four chambers. You will also notice that there is an opening between the right atrium (RA) and the right ventricle (RV). This is actually a valve known as the tricuspid valve (pronounced try-CUS-pid). It is made of three flexible thin parts, known as leaflets, that open and shut. The figure below shows the tricuspid valve, as seen from above, in the open and shut position (the other valves pictured are discussed below).
When shut, the edges of the three tricuspid valve leaflets touch each other, preventing blood from going back into the RA when the RV squeezes. Thus, the tricuspid valve serves as a one-way door that allows blood to move only in one direction - from RA to RV. Similarly, the mitral valve (pronounced my-TRULL) allows blood to flow only in one direction from the LA to the LV. Unlike the tricuspid valve, the mitral valve has only two leaflets.
In the top diagram, you will also notice thin thread like structures attached to the edges of the mitral and tricuspid valves. These chords or strings are known as chordae tendineae (pronounced cord-EYE TEND-in-eye). They connect the edges of the tricuspid and mitral valves to muscle bands or papillary muscles (pronounced PAP-pill-larry). The papillary muscles keep the valve leaflets from flopping back into the atrium. The chords are designed to control the movement of the valve leaflets similar to ropes attached to the sail of a boat. Like ropes, they allow the sail to bulge outwards in the direction of the wind but prevents them from helplessly flapping in the breeze. In other words, they allow the valve to open and shut in a given direction but not beyond a certain point.
Lets now follow the circulation of blood more closely. Oxygen-poor blood from the head, neck and arms returns to the right atrium (RA) via the superior vena cava (pronounced VEE-nah CAVE-ah) or SVC. On the other hand, oxygen-poor blood from the lower portion of the body returns to the RA via the inferior vena cava or IVC.
When the RA is full, it contracts. This builds up pressure and pushes the tricuspid valve open. Blood now rushes from the RA into the right ventricle (RV). When the RV is filled, the walls of the ventricle begin to contract and the pressure within the RV rises. The increased pressure shuts the tricuspid valve and blood is pumped into the pulmonary artery (pronounced PULL-mun-narey) through the pulmonic valve (pronounced pull-MON-nick). The diagram below once again shows the four heart valves as viewed from the top of the heart, i.e., we are looking down at the two ventricles with the right atrium and left atrium removed.
Answer:
The atria are separated from the ventricles by the atrioventricular valves: The tricuspid valve separates the right atrium from the right ventricle. The mitral valve separates the left atrium from the left ventricle.
In the first stage the Right and Left Atria contract at the same time, pumping blood to the Right and Left Ventricles. Then the Ventricles contract together (called systole) to propel blood out of the heart. After this second stage, the heart muscle relaxes (called diastole) before the next heartbeat.
If a baby is born with a heart defect (congenital), the heart is not working properly, usually because there is something wrong (defective) with the valves or the blood vessels around the heart. The defect can keep blood from flowing normally and can affect heart development. These defects are sometimes treated with surgery.